
www.manaraa.com

University of New Mexico
UNM Digital Repository

Civil Engineering ETDs Engineering ETDs

Spring 4-12-2018

Assessing the power of remotely-sensed snow cover
extent to improve understanding of snowpack-
streamflow dynamics: an application of MODIS
snow cover in Western U.S. mountain watersheds
Jennifer N. Van Osdel
Master's Student, Civil Engineering

Follow this and additional works at: https://digitalrepository.unm.edu/ce_etds

Part of the Civil and Environmental Engineering Commons

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Civil
Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Van Osdel, Jennifer N.. "Assessing the power of remotely-sensed snow cover extent to improve understanding of snowpack-streamflow
dynamics: an application of MODIS snow cover in Western U.S. mountain watersheds." (2018). https://digitalrepository.unm.edu/
ce_etds/202

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fce_etds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ce_etds?utm_source=digitalrepository.unm.edu%2Fce_etds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fce_etds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ce_etds?utm_source=digitalrepository.unm.edu%2Fce_etds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=digitalrepository.unm.edu%2Fce_etds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ce_etds/202?utm_source=digitalrepository.unm.edu%2Fce_etds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ce_etds/202?utm_source=digitalrepository.unm.edu%2Fce_etds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


www.manaraa.com

i 

 

    

  

     Jennifer Nicole Van Osdel 
       Candidate  

      

     Civil Engineering 

     Department 

      

 

     This thesis is approved, and it is acceptable in quality and form for publication: 

 

     Approved by the Thesis Committee: 

 

               

     Dr. Mark Stone, Chair 

  

 

     Dr. Julie Coonrod 

 

 

     Dr. Joseph Galewsky 

 

  

  

  



www.manaraa.com

ii 

 

     

  

  

  

  

  

 

Assessing the power of remotely-sensed snow cover extent to 

improve understanding of snowpack-streamflow dynamics: an 

application of MODIS snow cover in Western U.S. mountain 

watersheds 

 

 

by 

 

Jennifer Nicole Van Osdel 

 

B.A., Computer Science and Mathematics, Gustavus Adolphus, 2011 

 

 

 

 

THESIS 

 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

 

Master of Science 

Civil Engineering 

 

The University of New Mexico 

Albuquerque, New Mexico 

 

 

May 2018 

  



www.manaraa.com

iii 

 

Acknowledgements 

I would like to thank my advisor, Mark Stone, for guiding me through the mental 

and academic hurtles of graduate school and keeping me from going down the rabbit hole 

on more occasions than I can count. I would like to thank Julie Coonrod, who got me 

interested in geospatial analysis and has served as an invaluable female mentor. I would 

also like to thank Joe Galewsky for listening to numerous iterations of my research 

proposal and for sharing his climate change expertise. 

A special thank you to Mark and Joe for including me on that fateful research trip 

to Nepal in the winter of 2014 which would become the inspiration for my research and 

would lead to the founding of UNM4Nepal, where I was able to immerse myself in the 

world of non-profit international development. And to the UNM4Nepal community and 

all of the people that I have met through those experiences, thank you for your hard work, 

dedication, and friendship. 

Thank you to the National Science Foundation for believing in me and supporting 

my research through the NSF Graduate Research Fellowship Program. 

I am forever grateful to my best friend, Katelyn Bladel, who by a twist of fate, 

ended up at UNM for her Master’s of Fine Arts at the same time as me. Thank you for 

keeping me sane and full of cupcakes. 

Last, but certainly not least, I would like to thank my husband, Devin Lachowsky, 

who has been an unending supply of support throughout this process. Thank you for your 

support and undying belief that I could conquer this graduate school beast. And of course, 

thank you for making margaritas for the nights I had to work late. I love you.  



www.manaraa.com

iv 

 

Assessing the power of remotely-sensed snow cover extent to improve 

understanding of snowpack-streamflow dynamics: 

 an application of MODIS snow cover in Western U.S. mountain 

watersheds 

by 

Jennifer Nicole Van Osdel 

 

B.A., Computer Science and Mathematics, Gustavus Adolphus College, 2011 

M.S., Civil Engineering, University of New Mexico, 2018 

 

Abstract 

Mountain snowpacks provide essential water for socio-economic systems around the 

world, with nearly two billion people living in snow sensitive regions. Therefore, methods 

for characterizing the snowpack-streamflow dynamics at the watershed level are essential 

for understanding how changes in temperature and precipitation due to climate change will 

affect the water supply in these regions. However, in-situ snowpack measurements, such 

as snow water equivalent (SWE), are often unavailable or insufficient due to the financial 

and logistical constraints of installing snowpack monitoring systems. Remotely-sensed 

snow cover extent (SCE), or the proportion of a watershed that is covered in snow, has 

been previously integrated into snowmelt models and used to assess the relationships 

between snowmelt and streamflow. However, no research was found that provided a 
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comprehensive analysis of the ability of SCE to characterize snowpack-streamflow 

dynamics in a way that supports analysis between and within watersheds. This study 

develops and tests a methodology for characterizing the snowpack-streamflow dynamics 

of a watershed using SCE-based metrics that capture the shape and key temporal inflections 

in the SCE curve – start of snow season, start of snow melt, end of snow season, and 

average SCE. The results demonstrate that SCE and streamflow sufficiently characterize 

snowpack-streamflow dynamics to allow for inter-watershed comparison and intra-

watershed pattern recognition. The techniques developed and tested in this study allow for 

the characterization of snowpack-streamflow dynamics in remote and unmonitored 

watersheds to support future research into how those dynamics may change under future 

climate change scenarios.  
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1. Introduction 

Mountain snowpacks provide essential water for socio-economic systems in the 

Western United States and around the world. Nearly two billion people live in snow 

sensitive regions, meaning that their water supply depends on snowmelt and that those 

supplies face significant pressures due to climate change (Mankin et al, 2015). Yet in-situ 

knowledge of snowpack dynamics is limited by the financial and logistical constraints of 

snowpack monitoring systems like the Natural Resources Conservation Service’s Snow 

Telemetry (SNOTEL) program. The prevalence of snowpack measurements in other 

countries is often worse and does not necessarily match the importance and fragility of 

their winter snowpacks. 

Understanding the snowpack-streamflow dynamics of mountain watersheds is 

crucial to understanding how water gets to our fields, cities, and industries as well as how 

those dynamics may change under rising temperatures. In an idealized snow-dependent 

watershed, solid precipitation during the winter months accumulates in the basin with 

very little melt until temperatures rise sufficiently in the spring to trigger the snowmelt, 

or ablation, season. During this time, snow depletes quickly and makes its way as runoff 

to the river where it creates a spike in streamflow known as a spring pulse. This pulse 

generally consists of a quick increase to a peak streamflow before a longer attenuation 

period as the rate and volume of snowmelt runoff slows. 

Long-term changes in temperature and precipitation due to climate change have 

and will affect snowpack, streamflow, and many aspects of the dynamics between the 

two. Alterations in the snowpack-streamflow dynamics of mountain watersheds, such as 
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an earlier spring streamflow pulse, affect water supply from both surface (Hidalgo et al, 

2009) and groundwater (Eckhardt and Ulbrich, 2003) sources; hydropower production 

(Eckhardt and Ulbrich, 2003; Vicuna et al, 2008); agricultural water demand (Hay et al, 

2010); stream ecology (Rahel and Olden, 2008); water quality (Whitehead et al, 2009); 

and wildfire frequency and severity (Westerling et al, 2006), among numerous other 

critical natural and human systems. 

Climate change affects snowpack and snowmelt timing through increasing 

temperatures and increased variability in precipitation. Rising temperatures cause 

increased snowpack sublimation and earlier melt, causing shifts in both the magnitude 

and timing of the spring pulse. Transitional watersheds near freezing are particularly 

susceptible to the effects of increased temperatures as snow shifts to rain at higher and 

higher elevations (Hay et al, 2010; Miller et al, 2003; Stewart, 2009).  Predicted changes 

in precipitation are much more variable, with both increases and decreases expected due 

to complex atmospheric mechanisms (Nijssen et al, 2001). Potential increases of 

precipitation in certain regions may supplement snowpack lost to increasing temperatures 

in the coldest watersheds (Stewart, 2009). In contrast, Miller et al (2003) found that 

future snow accumulation decreased under all modeling scenarios regardless of whether 

precipitation increased or decreased. Either way, precipitation cannot be expected to 

bolster snow loss for much longer if temperatures continue to rise. 

Both historical and predicted changes in streamflow timing trend towards an 

earlier spring pulse in the U.S. Mountain West (Clow, 2009; Dudley et al, 2017) and 

around the world (Moran-Tejeda et al, 2014). This has been largely linked to higher 

winter and spring air temperatures that cause snowpack to melt earlier than historically 
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seen (Dudley et al, 2017; Stewart et al, 2005). A significant part of that variability spans 

the Pacific Decadal Oscillations, indicating that these changes are due to temperature 

increases beyond normal climatic variations (Stewart et al, 2005). As with snowpack, 

streamflow in lower-elevation and transitional watersheds that lie near freezing are and 

will be particularly affected (Dudley et al, 2017). Assuming no change in overall 

streamflow volume, this can be partially mitigated by creating sufficient storage. 

However, this will not work in all cases and neglects the impact of earlier snowmelt on 

other natural processes. Changes in magnitude are less certain than those in timing, but in 

general, decreases in streamflow will be seen due to weaker snowpacks caused by 

decreased precipitation; higher evapotranspiration and sublimation due to increased 

temperatures (Hay et al, 2010; Udall and Overpeck, 2017); and a shift from snow to rain 

(Feng and Hu, 2007). This is true for the U.S. Mountain West (Fyfe et al, 2017; Milly et 

al, 2005) and for major basins around the world (Nijssen et al, 2001). However, increased 

precipitation in certain regions has the potential to increase streamflow in the short term, 

particularly at very high elevations where this precipitation continues to fall as snow, 

increasing the winter snowpack (Stewart, 2009). 

Water supply prediction is a crucial tool for city planners and water infrastructure 

managers, among others, to prepare for the coming water year. This is done through a 

variety of statistical methods that include modeling of physical processes as well as 

statistical calculations like snow depletion curves. These methods depend on a snowpack 

measurement known as snow water equivalent (SWE), or the amount of water that would 

be released from the snowpack if it were to melt. This is also known as snow water 

content. SWE can be measured using a variety of methods, both automatic and manual. 
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SNOTEL snow monitoring stations in the U.S. track hourly SWE using snow pillows that 

weigh the snow and calculate the water content based on density. These measurements 

allow for a detailed picture of the snowpack at a specific location, but their network is 

limited due to the logistical and financial obstacles in setting up new stations in 

mountainous terrain. Thus, these stations may or may not be representative of an entire 

watershed and interpolating their data to the spatial domain is difficult and error prone. 

Furthermore, snow water equivalent data is scarce or non-existent in many of the world’s 

most snow-dependent regions, such as in the Hindu-Kush-Himalayas, due to a lack of 

expansive snow monitoring systems. 

Satellite-based measurements, such as snow cover extent (SCE), are often used in 

snowmelt runoff modeling to supplement SWE in defining snowpack-streamflow 

dynamics for a watershed. SCE, sometimes known as snow covered area or snow areal 

extent, measures the proportion of a given area that is covered in snow. It gives a broad 

view of the snow conditions in a watershed at the sacrifice of detailed data such as depth 

and water content. Snow cover products derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors mounted on National Aeronautics and Space 

Administration (NASA) satellites reports the presence of snow daily at a 500m spatial 

resolution with near-global coverage and is free to the public. This allows researchers to 

study greater spatial extents and more remote regions to gain new insights into 

snowpack-streamflow dynamics. SCE has been used in a variety of snowpack-streamflow 

analyses attempting to characterize the relationship between SCE, SWE, streamflow, and 

climate variables (Immerzeel et al, 2009; Tahir et al, 2011; Yang et al, 2003; Yang et al, 

2007). 
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Like all satellite-based products, SCE struggles with cloud cover, which obscures 

the landscape and sends a reflectance signal similar to that of snow. Methods such as 

compositing and smoothing can help lessen this constraint, but certain regions that 

experience persistent cloud cover, such as the U.S. Pacific Northwest, may require more 

advanced cloud filling techniques or may not be suitable for research using SCE. SCE 

also experiences saturation near its upper boundary of 1.0, which represents full coverage 

of the watershed. SCE may stay near this value for most of the snow season in high-

elevation watersheds, causing a loss in predictive capacity. Derivative metrics focused on 

the timing of key inflections in SCE, such as the start and end of snow melt, have 

previously been used to circumvent this challenge (Reed et al, 2009).  

Many procedures have been created to transform SCE into SWE with mixed 

results (Martinec and Rango, 1981; Molotch and Margulis, 2008) due to the complex 

topographical and climatic variables that factor into snow accumulation and ablation. 

However, few studies have examined how SCE may be used apart from SWE to 

characterize the snowpack-streamflow dynamics of a watershed. Even fewer have 

examined how these dynamics change between watersheds and how those changes are 

reflected in SCE. At the time of this study, no previous work was found that put forth a 

methodology and concrete examples for using SCE to analyze inter- and intra-watershed 

relationships to characterize and differentiate between watersheds. This would allow 

researchers to explore snowpack-streamflow dynamics in watersheds without snowpack 

monitoring systems either as the main analysis or to assist in watershed selection and 

preliminary analysis. 
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The goal of this study is to assess and demonstrate the suitability of snow cover 

extent for characterization and analysis of snowpack-streamflow dynamics of mountain 

watersheds. This goal is met by assessing the ability of SCE and SCE-based metrics to (a) 

capture inter-watershed variability with respect to climate, SWE, and streamflow; (b) 

capture intra-watershed patterns with respect to SWE and streamflow; and (c) 

characterize and differentiate between the snowpack-streamflow dynamics of 

hydrologically distinct watersheds in the U.S. Mountain West. 

 

2. Methodology and Data Sources 

The methodology for this study uses spatial and temporal aggregation to 

transform datasets with disparate spatial and temporal resolutions into a series of 

comparable text files and metrics, as summarized in Figure 1. Snow cover extent (SCE) 

(Section 2.2) is calculated for designated watersheds (Section 2.1) from spatial snow 

cover data to produce a singular measurement that can be compared to streamflow. 

Similarly, daily streamflow (Section 2.3) is temporally aggregated to match the 8-day 

period of the snow cover extent. The SCE and streamflow for an average water year 

(Section 2.4) are then calculated from the 8-day SCE and streamflow for water years 

2001 to 2016. Information on the cloud cover, streamflow record, and maximum SCE are 

then used to filter the original watersheds for the analysis (Section 2.5). 

Snow season characterization (Section 2.6) is performed using a series of 

thresholds to pinpoint key inflections in the snow season based on SCE. These are the 

start of the snow season (SOS), the start of snow melt (SOMelt), and the end of the snow 
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season (EOS). Average SCE (AvgSCE) for the entire average water year is also 

calculated to capture the shape of the SCE curve. The main foundation for the remainder 

of the analysis consists of (a) these SCE-based metrics, (b) the SCE and streamflow for 

all water years, and (c) the SCE and streamflow for the average water year. 

Additional data sources are used to describe the snow water equivalent (SWE), 

climate, and elevation of the study watersheds. SWE is handled similarly to streamflow 

where daily values are aggregated into 8-day periods and then into an average water year 

(Section 2.7.1). Climate data are used to generate average annual precipitation and 

temperature for each watershed over the study period (Section 2.7.2). Elevation metrics 

are derived from a hydrologically-accurate digital elevation model (Section 2.7.3). 
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Figure 1: Data processing flow diagram for main data sources. 

 

2.1 Initial watershed selection 

The Geospatial Attributes for Gages for Evaluating Streamflow (version II) 

(https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml) (Falcone, 

2011), or GAGES II, provides watershed delineation and geospatial attributes for stream 

gages maintained by the U.S. Geological Survey (USGS). This data set also classifies 

each gage’s watershed as reference (minimal human impact) or non-reference and labels 

each one with the appropriate ecological classification. This research used GAGES II to 

identify watersheds that met the following criteria: (1) reference watershed; (2) located in 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml
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the Mountain West region of the U.S. and (3) has 20 years of data since 1990. 193 gages 

of the 9322 total gages and 2057 reference gages met these standards. 

 

2.2 Snow cover extent 

Remotely-sensed snow cover products have been generated by the National Ice 

and Snow Data Center (NISDC) using data from Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors on-board NASA’s Aqua and Terra satellites 

(https://nsidc.org/data/modis/index.html) (Hall et al, 2002). MODIS-derived snow cover 

extent has been used in a variety of snowmelt-runoff modeling studies (Immerzeel et al, 

2009; Reed et al, 2009; Tekeli et al, 2005). Snow cover mapping algorithms used by the 

NISDC employ the Normalized Difference Snow Index (NDSI) using surface reflectance 

values from MODIS bands 4 (0.545-0.565 μm) and 6 (1.628-1.652 μm) (Eq. 1) (Hall et 

al, 1995). Additional quality control measures are applied to account for dense canopies 

and errant snow pixels in areas with temperatures that cannot sustain snow, among other 

sources of error. Pixels are classified as snow, land, inland water, ocean, or cloud or are 

labeled with one of several different error codes. 

 

𝑁𝐷𝑆𝐼 =
(𝐵𝑎𝑛𝑑 4−𝐵𝑎𝑛𝑑 6)

(𝐵𝑎𝑛𝑑 4+𝐵𝑎𝑛𝑑 6)
         (1) 

 

MOD10A2 (http://nsidc.org/data/MOD10A2) is an 8-day composite snow cover 

product at 500m spatial resolution from the MODIS sensors aboard NASA’s Terra 

https://nsidc.org/data/modis/index.html
http://nsidc.org/data/MOD10A2
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satellite (Hall et al, 2002). This product marks a pixel as snow if snow was detected 

within a pixel for any day during the 8-day period, meaning that it represents the 

maximum snow cover during the composite period. A pixel is marked as cloud only if 

clouds were present in the pixel for every day in the period. The composite method helps 

limit the negative effects of cloud cover on snow detection, increasing accuracy at the 

expense of temporal resolution (Zhou et al, 2005). Accuracy of the lower-level products 

used to generate MOD10A2 were shown to have an accuracy of ~93% when compared 

with snow cover at Snow Telemetry (SNOTEL) monitoring stations (Hall and Riggs, 

2007). 

MOD10A2 files were downloaded for every 8-day period from September 29, 

2000 to September 28, 2016 to cover water years 2001 to 2016. These files were 

projected into USA Contiguous Albers Equal Area and mosaiced together using the 

MODIS Reprojection Tool. Using the ArcGIS ArcPy module for Python, the projected 

files for each 8-day period were clipped to each of the watersheds in this study, creating a 

new raster for each period for each gage ID. Each period was classified with a number 

that signified its position in the water year where 1 represents the first 8-day period at the 

beginning of October and 46 represents the last 8-day period at the end of September of 

the next year. This is referred to as the period of the water year for the remainder of this 

study. 

Snow cover extent (SCE) (Eq. 2) and cloud cover extent (CCE) (Eq. 3) were 

defined as the proportion of the pixels in a watershed marked as snow or cloud, 

respectively. ArcPy was used to extract SCE and CCE from each raster and generate a 

file for each watershed containing the SCE and CCE for each 8-day period.  
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𝑆𝐶𝐸 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 snow 𝑝𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
     (2) 

 

𝐶𝐶𝐸 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 cloud 𝑝𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
     (3) 

 

A smoothing algorithm was developed to further alleviate the effects of cloud 

cover under certain circumstances. This algorithm was aimed at watersheds that 

experienced short-term cloud cover that corresponded to a sharp drop in SCE, indicating 

that cloud cover was obscuring snow, as demonstrated in Reed et al, 2009. These gaps 

were filled using linear interpolation, and the change in SCE was limited by the amount 

of cloud cover as that is the maximum amount of the watershed that could be covered in 

obscured snow. Any interpolated SCE value that was less than the original one was 

thrown out in favor of the original to preserve data. Several watersheds across different 

climate types were visually inspected to ensure accurate smoothing results. The smoothed 

SCE values were used for the remainder of the analysis. See Appendix B for details. 

 

2.3 Streamflow 

The United States Geological Survey (USGS) maintains streamflow gages 

throughout the United States and its territories, providing data through the National 

Water Information System (NWIS) (https://waterdata.usgs.gov/nwis/sw) (USGS, 2016).  

This study uses historical daily mean streamflow from September 29, 2000 to September 

https://waterdata.usgs.gov/nwis/sw
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28, 2016 to cover water years 2001 to 2016. Daily values were aggregated to match the 

MODIS 8-day periods using the average streamflow for the period as demonstrated in 

Zhou et al (2005). A linear regression analysis revealed a strong positive logarithmic 

correlation between peak streamflow and watershed drainage area as shown in Figure 2a. 

This reflects that larger watersheds generally collect more water and represent higher-

order rivers with larger streamflows. Streamflow was normalized by the drainage area to 

allow for analysis of underlying relationships with other variables. Figure 2b shows that 

the normalization was highly effective at eliminating the relationship between peak 

streamflow and drainage area. This normalized streamflow was used for the remainder of 

the analysis. 
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Figure 2: Logarithmic regression of drainage area with (a) peak Q and (b) peak Q normalized by drainage 

area. 

 

2.4 Average water year 

The concept of an average water year was used during this research to generate a 

concise description of “typical” watershed behavior to allow for efficient analysis of and 

comparisons between watersheds. It is calculated for a specific variable by generating the 



www.manaraa.com

14 

 

16-year average for each 8-day period, thus producing a statistical portrait of the 

watershed. Previous research has employed this concept in a limited capacity using terms 

such as “average seasonal snow cycle” (Immerzeel et al, 2009), “seasonal cycle of SWE” 

(Yang et al, 2003; Yang et al, 2007), and “average snow-covered area over [a time] 

period” (Tahir et al, 2011). This study goes further and utilizes the average water year as 

a core concept for characterizing a watershed based on its average SCE, SWE, 

streamflow, temperature, and precipitation. Watersheds can then be described and 

compared based on their typical behavior for each indicator. 

 

2.5 Final watershed selection 

Once cloud cover extent, smoothed snow cover extent, and normalized 

streamflow were processed for the 193 initial watersheds (Section 2.1), a series of filters 

using these variables were applied to ensure data quality for the remainder of the 

analysis. 

 

Streamflow 

GAGES II only accounts for data continuity through 2010 so current streamflow 

data from USGS were used to filter out watersheds with incomplete stream gage records. 

Eight watersheds were eliminated under this criterion. 

 

Cloud cover 
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MODIS SCE, like other satellite data sets, is limited by cloud cover that prohibits 

sensors from getting an accurate picture of the ground. To account for this, a cloud ratio 

was generated for each watershed based on the average water year after smoothing (Eq. 

4). This ratio reflects the average amount of cloud coverage with respect to SCE, 

indicating the persistency of cloud cover as well as the compatibility of cloud-SCE co-

occurrence patterns with the smoothing algorithm. Watersheds with limited cloud cover 

or with ephemeral cloud cover that corresponds to a similar drop in SCE will have low 

cloud ratios. Watersheds with high cloud cover that occurs over extended periods of time 

and does not correlate well with decreases in SCE will have high cloud ratios. These 

watersheds are unsuitable for this type of analysis without more rigorous cloud removal 

processes. 

 

𝑐𝑙𝑜𝑢𝑑 𝑟𝑎𝑡𝑖𝑜 =  
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝐶𝐸

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑆𝐶𝐸
       (4) 

 

Watersheds with a cloud ratio greater than 0.5 were eliminated from the final 

dataset, leaving 127 watersheds for analysis. As expected, most of the watersheds with 

high cloud ratios were in the Pacific Northwest where cloudy skies persist throughout the 

winter season, hindering satellite readings. 

 

Snow cover extent 
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The final filter removed any watersheds with an average annual peak SCE less 

than 30%, or those with consistently low snow coverage even at the height of the snow 

season. Only six watersheds were eliminated based on this criterion. These watersheds 

were eliminated as they interfered with algorithms used to classify the snow season.  

 

A total of 121 watersheds were found suitable for further analysis (see Figure 3). 

These watersheds had drainage areas ranging from 4.03 to 14,267 km2 that skewed 

towards smaller basins with a mean of 706 km2 and a median of 236 km2. This skew is 

caused by the necessary restriction of the study area to reference, or natural, watersheds. 

Mean elevations (Section 2.7.3) of the study watersheds are normally distributed, ranging 

from 277 to 3626 m with a mean of 2220 m and a median of 2268 m. Average annual 

temperatures (Section 2.7.2) are also normally distributed, ranging from -0.63 to 13 °C 

with a mean of 5.35 °C and a median of 5.45 °C. Precipitation is skewed to the left due to 

the relatively few study watersheds on the Pacific coast where precipitation magnitudes 

are generally higher. Average annual precipitation (Section 2.7.2) ranges from 35 to 252 

mm with a mean of 84.8 mm and a median of 69.6 mm. 
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Figure 3: Initial GAGESII reference watersheds in the Mountain West characterized by their status after 

final watershed selection. Study watersheds represent the final watershed selection for this study. 

 

2.6 Snow season characterization 

Snow cover extent, by definition, has a maximum of 1.0 at which the watershed is 

completely covered in snow. This leads to saturation of the variable as shown in Figure 4. 

During the middle of the snow season, most high-altitude watersheds remain at an SCE 

near 1.0 for months, rendering SCE useless for direct comparison with other hydrological 

variables such as snow water equivalent and streamflow. However, a temporal 
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classification of the key inflections of the snow season using SCE mitigates the effects of 

this saturation and allows for further analysis.  

Studies that classify the snow season based on SCE are limited, and no studies 

were found that used that classification to assess the dynamics of watershed hydrology. 

However, this type of classification makes sense given how important the timing of snow 

melt can be to streamflow and snow depth (Rango, 1997). A similar method was used by 

Reed et al (2009) to classify the start and end of the snow season based on MODIS SCE 

to assess the relationship of snow season timing to vegetation greenness during the 

growing season, which inadvertently measures some aspects of snowpack-streamflow 

dynamics. Inspiration was also taken from Trujillo et al (2009) who classified snow water 

equivalent curves based on the timing and slopes of the accumulation and ablation 

seasons. 

 

Figure 4: SCE distribution for all study watersheds with respect to the 8-day period in the average water 

year. 
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Snow season metrics were derived for each watershed from the SCE for an 

average water year using a series of thresholds. Thresholds were determined by starting 

with those from Reed et al (2009) and refining them through experimentation and visual 

analysis. An absolute threshold was quickly determined to be insufficient to handle the 

variability of snowpack dynamics captured by the study watersheds. Rather than defining 

static thresholds for each geographic area, as in Reed et al (2009), thresholds were 

defined by equations that were then calibrated to each individual watershed. The first 

threshold defines the start and end of the snow season, or SOS and EOS, respectively, 

and is set at minimum SCE + (10% of peak SCE). SOS is defined as the period when the 

SCE crosses this threshold in the upward direction, and EOS is defined as the period 

when the SCE once again falls below this threshold. This threshold was allowed to begin 

before the start of the water year, indicated by negative SOS values, as many watersheds 

in the upper Rockies experience a snow season that begins before October 1. The second 

threshold defines the start and end of the main snow season, or the plateau caused by the 

saturation of SCE, and is set at 80% of peak SCE. The end of the main snow season is 

defined as the start of snowmelt, or SOMelt, and signifies a transition from snow 

accumulation to snow ablation. SOMelt is defined as the period when SCE falls back 

below the main season threshold. See Appendix C for more details. 

These metrics divide the season into three segments: accumulation, ablation, and 

off-season, as shown in Figure 5. Accumulation occurs from SOS to (SOMelt – 1); 

ablation occurs from SOMelt to (EOS – 1); and the off-season occurs from EOS to (SOS 

– 1), as the average water year is cyclical. 
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Average snow cover extent (AvgSCE) for the average water year was also 

calculated as a proxy for the overall shape of the SCE curve (see Figure 5). AvgSCE 

serves to complement the timing metrics described above. Its value is influenced by the 

peak SCE; how long the watershed remains in the main snow season, or plateau, before 

snow melt; how long the entire snow seasons lasts; and how quickly SCE moves to and 

from saturation near the maximum SCE. Peak snow cover extent was also explored as a 

potential metric but was discarded because it did not adequately capture inter-watershed 

snow season variability as many watersheds achieve approximately the same maximum 

SCE due to the saturation effect. 
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Figure 5: Characterization of the snow season using a threshold method for SCE to identify the start of the 

snow season, start of snow melt, and end of the snow season. 

 

2.7 Additional Data sources 

2.7.1 Snow water equivalent 

The National Resources Conservation Center’s Snow Telemetry (SNOTEL) 

(https://www.wcc.nrcs.usda.gov/snow) network consists of 800 automated data collection 

sites in high mountain watersheds that collect data on precipitation, temperature, wind, 

snowpack, and other hydro-meteorological variables. Each station includes a snow 

pillow, which weighs the snowpack and calculates the snow water equivalent (SWE), or 

https://www.wcc.nrcs.usda.gov/snow
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the amount of water that the snow would produce if it were to melt. See Serreze et al 

(1999) for a comprehensive description of the SNOTEL network and the resulting 

snowpack data. 

Of the 121 watersheds in this study, 41 of them were found to contain one or 

more SNOTEL stations for a total of 78 stations. Daily SWE readings from each of these 

stations was downloaded for the same time period as the MODIS SCE data, September 

29, 2000 to September 28, 2016. Not all SNOTEL stations contained the full record, but 

no stations were eliminated as it was not necessary to have the entire 16 years of SWE for 

the purposes of this portion of the analysis. 

This data was aggregated to match the MODIS 8-day periods by extracting the 

maximum SWE reading for each period. The SWE for an average water year for each 

station was then calculated from the aggregated data using however many years were 

available (see Section 2.4). Average water year SWE for watersheds with more than one 

station were averaged before being attributed to that watershed. This eliminated issues 

with statistical normality during analysis between SCE and SWE stemming from 

duplicate SCE data due to the one-to-many relationship. It also ameliorated the effects of 

the elevation-dependence of snowpack within a watershed.  
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Figure 6: Map of study watersheds containing one or more SNOTEL stations. 

 

2.7.2 Climate 

PRISM (parameter-elevation regressions on independent slopes model) datasets 

(http://www.prism.oregonstate.edu/) were used to generate precipitation and temperature 

data for each of the study watersheds. The PRISM Climate Group produces and 

maintains these datasets using a variety of monitoring networks and modeling techniques 

to create historical spatial climate records (Daly et al, 2002). The variables used in this 

http://www.prism.oregonstate.edu/
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research are precipitation, minimum temperature, maximum temperature, and mean 

temperature. 

Monthly 4km datasets were downloaded for October 2000 to October 2016; 

projected to U.S. Contiguous Albers Equal Area; resampled to match the 500km MODIS 

dataset; and clipped to the study watersheds. For each variable, the average for each 

watershed and each period were calculated and then aggregated into mean annual values 

over the 16 water years as well as the following seasonal values: mean for December to 

March, mean for April to July, and mean for August to November. Snow and rain could 

not be accurately separated using monthly datasets. 

 

2.7.3 Elevation 

Hydro1K (https://lta.cr.usgs.gov/HYDRO1K) is derived from the USGS 

GTOPO30 dataset (https://lta.cr.usgs.gov/GTOPO30) and is designed to provide a 

hydrologically correct digital elevation model (DEM) for hydrological analysis (Verdin, 

2011). It has a spatial resolution of 30 arc-seconds (~1km). This dataset was projected to 

U.S. Contiguous Albers Equal Area and resampled to match the 500km MODIS dataset. 

ArcPy was used to clip the DEM to each study watershed and extract the following 

metrics: minimum elevation, maximum elevation, mean elevation, and range of 

elevations. 

  

https://lta.cr.usgs.gov/HYDRO1K
https://lta.cr.usgs.gov/GTOPO30
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3. Results 

The goal of this study is to assess and demonstrate the suitability of snow cover 

extent for characterization and analysis of snowpack-streamflow dynamics of mountain 

watersheds. This is accomplished through statistical analysis of the ability of SCE and 

SCE-based metrics to capture hydro-climatological differences between watersheds 

(Section 3.1) and hydrological dynamics within a watershed (Section 3.2) as well as their 

ability to characterize and differentiate between the snowpack-streamflow dynamics of 

hydrologically distinct watersheds in the U.S. Mountain West (Section 3.3). 

 

3.1 Inter-watershed variability 

The ability of snow cover extent to capture snowpack-streamflow dynamics 

between watersheds was explored using SCE-based metrics (Section 2.6) for all 121 

study watersheds. A preliminary correlation analysis was conducted between a large 

group of metrics to identify and remove those metrics which were redundant or 

insignificant. For example, annual precipitation and temperature were determined to be 

sufficient for a robust climatological analysis, leading to the removal of annual minimum 

and maximum temperatures as well as seasonal classifications of temperature and 

precipitation. See Appendix D for more details. 

Final metrics chosen for the analysis of inter-watershed variability are mean 

annual temperature (AvgAnnualTemp), mean annual precipitation (AvgAnnualPPT), 

maximum SWE (PeakSWE), and maximum streamflow (PeakQ). First, climatological 

variance with respect to SCE is assessed using AvgAnnualTemp and AvgAnnualPPT to 
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ensure that SCE captures the impact of climate on snowpack (Section 3.1.1). Next, 

PeakSWE is used to assess how well SCE and SWE correlate as well as to determine how 

the differences between SCE and SWE express themselves and what this may mean for 

the application of SCE (Section 3.1.2). Finally, relationships between SCE-based metrics 

and PeakQ help determine SCE’s ability to capture snowpack-streamflow dynamics 

between watersheds (Section 3.1.3). 

 

3.1.1 Climatological variance 

 A correlational analysis was performed between the SCE-based metrics and the 

two climatic variables – average annual temperature (°C) (AvgAnnualTemp) and average 

annual precipitation (mm) (AvgAnnualPPT) (Section 2.7.2). This was first performed 

without any transformations to assess normality of the regressions. SOS, SOMelt, EOS, 

and AvgSCE all had significant linear relationships with AvgAnnualTemp with p<0.005 

(see Table 1). Linear regression of each variable with AvgAnnualTemp revealed normal 

distributions of the residuals with skewness between -0.7 and +0.7. Thus, no further data 

transformations were applied to allow for straight-forward interpretation of the results. As 

shown in Figure 7, AvgSCE had the strongest correlation with an R2 of 0.7944 followed 

closely by SOMelt with an R2 of 0.6983, SOS with an R2 of 0.6763, and EOS with an R2 

of 0.4277. SOS was the only variable with a positive correlation to AvgAnnualTemp 

while all other variables had a negative correlation. The opposing correlations of SOS 

and EOS indicate that the snow season contracts in warmer climates rather than simply 

shifting earlier. 
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Table 1: R2, R, and p values for the correlational analysis between AvgAnnualTMean and each of SOS, 

EOS, SOMelt, and AvgSCE. 

 R2 R p 

SOS* 0.6763 0.8224 6.28E-31 

EOS* 0.4277 0.6540 4.18E-16 

SOMelt* 0.6983 0.8356 9.43E-33 

AvgSCE* 0.7944 0.8913 1.09E-42 

* Significant correlation with p<0.005. 
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Figure 7: Linear regression of (a) SOS, (b) SOMelt, (c) EOS, and (d) AvgSCE against the mean annual 

temperature from PRISM for all study watersheds. 
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 For precipitation, only EOS had a significant linear relationship with 

AvgAnnualPPT with p<0.005. However, a linear regression of EOS against 

AvgAnnualPPT revealed non-normal distributions of the residuals with skewness > 0.7, 

indicating that transformations were necessary. AvgAnnualPPT was determined to be 

highly skewed to the left. It was transformed to normality using the inverse square root, 

henceforth written as INVSQRT(AvgAnnualPPT), and the analysis was repeated. This is 

not done in Section 3.1.3 during the multiple linear regression with AvgSCE, 

SQRT(PeakQ), and AvgAnnualPPT since our residuals were normal in that instance. 

 Using INVSQRT(AvgAnnualPPT), EOS was still the only metric with a 

significant linear relationship with p<0.005 (see Table 2). A linear regression of the two 

variables revealed a normal distribution of the residuals with skewness between -0.7 and 

+0.7. Thus, no further data transformations were applied. EOS has a positive correlation 

to INVSQRT(AvgAnnualPPT) with an R2 of 0.3137 (see Figure 8). 

 

Table 2: R2, R, and p values for the correlational analysis between INVSQRT(AvgAnnualPPT) and each of 

SOS, EOS, SOMelt, and AvgSCE. 

 R2 R p 

SOS 0.0066 0.0810 0.377 

EOS* 0.3137 0.5601 2.41E-11 

SOMelt 0.0412 0.2030 0.0255 

AvgSCE 0.0555 0.2356 0.00928 

* Significant correlation with p<0.005.  
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Figure 8: Linear regression of EOS against the inverse square root of mean annual precipitation from 

PRISM for all study watersheds. 

 

 

3.1.2 Snow water equivalent 

 A correlational analysis was then performed between the SCE-based metrics and 

maximum snow water equivalent (mm) (PeakSWE). This was first performed without 

any transformations to assess normality of the regressions. SOMelt, EOS, and AvgSCE 

all had linear relationships with PeakSWE with a p<0.005. SOS was not significantly 

related to PeakSWE. However, linear regression of each variable with PeakSWE revealed 

non-normal distributions of the residuals with skewness > 0.7, indicating that 

transformations were necessary. PeakSWE was then transformed to normality using the 

square root, henceforth written as SQRT(PeakSWE), and the analysis was repeated. 
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 Using SQRT(PeakSWE), SOMelt, EOS, and AvgSCE all still had significant 

linear relationships with p<0.005 while SOS was still not significant despite being 

normally distributed (see Table 3). A linear regression analysis was then performed again 

between each of the significant SCE metrics – SOMelt, EOS, and AvgSCE – and 

SQRT(PeakSWE) as shown in Figure 9. The linear regressions revealed normal 

distributions of the residuals with skewness between -0.7 and +0.7. Thus, no further data 

transformations were applied to allow for straight-forward interpretation of the results. 

EOS had the strongest linear relationship with SQRT(PeakSWE) with an R2 of 0.4662 

followed by AvgSCE with an R2 of 0.3756 and SOMelt with an R2 of 0.3455. 

 

Table 3: R2, R, and p values for the correlational analysis between each of the SCE metrics – SOS, EOS, 

SOMelt, and AvgSCE – and SQRT(PeakSWE). 

 R2 R p 

SOS 0.1598 0.3997 0.00962 

EOS* 0.4662 0.6838 8.73E-07 

SOMelt* 0.3455 0.5878 5.32E-05 

AvgSCE* 0.3756 0.6128 2.05E-05 

* Significant correlation with p<0.005. 
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Figure 9: Linear regression of SQRT(PeakSWE) against (a) SOMelt, (b) EOS, and (c) AvgSCE for 

watersheds containing one or more SNOTEL stations. Metrics for watersheds with multiple stations were 

averaged. 
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An additional factor to consider is how the elevation of the SNOTEL station 

affects the relationship between the SCE-based metrics and SWE. The impact of 

including elevation was assessed for all metrics through a multiple linear regression 

analysis. The R2 values for SOS, SOMelt, and AvgSCE were all improved with both the 

SCE-based metric and elevation coefficients found to be statistically greater than zero 

with p<0.005 (see Figure 10 (right)). Graphs on the left-hand side of Figure 10 visually 

demonstrate how including elevation introduces more variability within PeakSWE values 

for the same value of the SCE-based metric. Although EOS also showed an improvement 

in R2, elevation was found to be insignificant with p=0.117. When combined with 

elevation, SOMelt has the strongest linear relationship with R2 of 0.5336, up from 

0.3455, followed by AvgSCE with R2 of 0.4942, up from 0.3756, and SOS with R2 of 

0.3723, which was made significant by the inclusion of elevation. 
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Figure 10: Multiple linear regression of SQRT(PeakSWE) using elevation and (a) SOS, (b) SOMelt, and (c) 

AvgSCE for watersheds containing one or more SNOTEL stations. Overlaid measured vs. predicted 

SQRT(PeakSWE) against each metric are on the left. The linear regressions of measured vs. predicted 

SQRT(PeakSWE) are on the right. Metrics for watersheds with multiple stations were averaged. 
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3.1.3 Streamflow 

 A correlational analysis was performed between the SCE-based metrics and 

maximum normalized streamflow (cms/km2) (PeakQ) (Section 2.3). This was first 

performed without any transformations to assess normality of the regressions. SOS, 

SOMelt, EOS, and AvgSCE all had linear relationships with PeakQ with a p<0.005. 

However, linear regression of each variable with PeakQ revealed non-normal 

distributions of the residuals with skewness > 0.7, indicating that transformations were 

necessary. PeakQ was then transformed to normality using the square root, henceforth 

written as SQRT(PeakQ), and the analysis was repeated. 

 Using SQRT(PeakQ), SOS, SOMelt, EOS, and AvgSCE all still had significant 

linear relationships with p<0.005 (see Table 4). A linear regression analysis was then 

performed between each of the SCE-based metrics and SQRT(PeakQ) as shown in Figure 

11. The linear regressions revealed normal distributions of the residuals with skewness 

between -0.7 and +0.7. Thus, no further data transformations were applied. EOS had the 

strongest linear relationship with SQRT(PeakQ) with an R2 of 0.5308 followed by 

AvgSCE with an R2 of 0.3101, SOMelt with an R2 of 0.3047, and SOS with an R2 of 

0.1941. SOS and EOS have a negative and positive relationship, respectively, indicating 

that the contraction of the snow season relates negatively to streamflow.  
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Table 4: R2, R, and p values for the correlational analysis between each of the SCE metrics – SOS, EOS, 

SOMelt, and AvgSCE – and SQRT(PeakQ). 

 R2 R p 

SOS* 0.1941 0.4405 4.27E-07 

EOS* 0.5308 0.7285 2.79E-21 

SOMelt* 0.3047 0.5520 5.28E-11 

AvgSCE* 0.3101 0.5569 3.29E-11 

* Significant correlation with p<0.005. 
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Figure 11: Linear regression of SQRT(PeakQ) against (a) SOS, (b) SOMelt, (c) EOS, and (d) AvgSCE for 

watersheds containing one or more SNOTEL stations. Metrics for watersheds with multiple stations were 

averaged. 
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 Although AvgSCE and SQRT(PeakQ) have a significant linear relationship, there 

are several outliers of concern (see Figure 11d). Of particular concern are the outliers in 

the upper-left quadrant that come from the coastal region of California that experiences 

low SCEs and high PeakQs. This indicates that factors such as non-frozen winter 

precipitation may be confounding the relationship.   

 To explore this phenomenon, a multiple linear regression was performed using 

AvgSCE and average annual precipitation (mm) (AvgAnnualPPT) to predict 

SQRT(PeakQ). AvgAnnualPPT does not display a normal distribution, but the residuals 

of the linear regression model are normally distributed with a skewness of 0.325, so the 

model is considered to be successful. Including precipitation in our model brings the R2 

up from 0.3101 with AvgSCE alone in Figure 11d to 0.7048 in Figure 12 (right). Both 

variables have p < 0.005, indicating that the regression coefficients are statistically 

greater than zero. Although this model provides a much better fit, it still has trouble 

capturing low-SCE, high-flow points on the left-hand side and moderate-SCE, low-flow 

points on in the lower middle region. However, the results are promising for both the 

SCE-metrics alone and a multiple linear regression model that incorporates precipitation. 
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Figure 12: Multiple linear regression of SQRT(PeakQ) using AvgSCE and precipitation. Overlaid 

measured vs. predicted SQRT(PeakQ) against AvgSCE are on the left. The linear regressions of measured 

vs. predicted SQRT(PeakQ) are on the right. 

 

3.2 Intra-watershed patterns 

The ability of snow cover extent to capture snowpack-streamflow dynamics 

within a watershed was explored using the 8-day average water year values (Section 2.4) 

for SCE, SWE, and streamflow for all 121 study watersheds. The relationship between 

SCE and SWE within all watersheds is examined to find intra-watershed patterns that 

shed light on the complex dynamics between the two variables. The same analysis is then 

performed on a single watershed to better demonstrate the pattern (Section 3.2.1). The 

relationship between SCE and streamflow within all watersheds is then examined to find 

intra-watershed patterns that illustrate the snowpack-streamflow dynamics of the study 
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watersheds. Again, the same analysis is also performed on a single watershed to better 

demonstrate the pattern (Section 3.2.2). Assessment of SCE’s ability to express 

climatological variance within an individual watershed was not within the scope of this 

study, but analysis of SCE and climate indicators by elevation band provides an 

opportunity for future research. 

 

3.2.1 Snow water equivalent 

Plotting 8-day SCE against 8-day SWE for all watersheds containing SNOTEL 

stations (see Figure 13) results in a display of the hysteretic behavior shown in Magand et 

al (2013) who found the same pattern between SCE and snow depth. SCE increases 

rapidly with respect to SWE during accumulation (blue) and decreases more slowly and 

with greater variability during ablation (orange). Figure 13 also demonstrates the 

saturation of SCE near 1.0 at the right side of the figure with high SCE values associated 

with a wide range of SWE values. High altitude SNOTEL stations and permanent 

snowpacks cause several points in the off-season to have high SWE values, but overall, 

off-season values hover near the origin. 
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Figure 13: 8-day SCE vs SWE from the average water year for every study watershed containing one or 

more SNOTEL stations. Metrics for watersheds with multiple stations were averaged. 

 

Another way to explore the relationship between SCE and SWE is by analyzing 

how they change with respect to each other. Graphs of the changes in SCE versus the 

changes in SWE for each portion of the snow season, as shown in Figure 14, illuminate 

how the relationship between these two variables differs between accumulation and 

ablation as well as on how accumulation and ablation are defined. This type of figure, 

regardless of the variables used, will henceforth be known as a delta graph. Figure 14 

shows the distribution of SCE and SWE during accumulation, ablation, and the off-

season for the average water year for all 121 study watersheds. 
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Figure 14a validates the definition of SOS and SOMelt and their ability to 

delineate the accumulation season using only SCE. Accumulation can be loosely defined 

from this delta graph as any point at which SWE is increasing or stable. Points with a 

SWE below 0.0 indicate difficulties in snow season characterization using SCE. 

However, this behavior is expected to some extent given the nature of the threshold 

method used to define SOMelt. Furthermore, we expect to see increases in SWE met with 

both negative and positive changes in SCE due to the saturation of the SCE curve and 

transient melt at lower elevation while snow is still accumulating at higher elevations. 

Figure 14a shows that 90.9% of accumulation points fall in the upper quadrants, as 

expected, and only 9.1% of points have a negative SWE, indicating good delineation of 

the accumulation season. Of the points in the upper quadrants, 62.9% have non-negative 

SCE values and 27.1% have negative SCE values. Thus, despite the variability in the 

accumulation season, a majority of points still show an agreement between SCE and 

SWE in terms of sign. 

Similarly, Figure 14b validates the definition of SOMelt and EOS and their ability 

to delineate the ablation season using only SCE. Ablation can be defined from Figure 14b 

as any point at which SWE is decreasing or stable. As with accumulation, SWE values 

that do not fit this criterion indicate difficulties in snow season characterization using 

SCE. The delta graph shows that 88.7% of ablation points fall in the lower-left quadrant, 

as expected, and only 11.3% of points have a positive SWE. Just 2% of points have a 

positive change in SCE, indicating that the SCE-based metrics can properly delineate the 

ablation season. 
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The off-season delta graph in Figure 14c is of less interest but has been provided 

to show that there are no unexpected behaviors. A lack of major increases in SWE 

indicate that the transition between the off-season and the accumulation season is well-

defined. Points in the lower-left quadrant are capturing the remainder of snowmelt after 

the EOS threshold has been met, including points on the negative x-axis that represent 

continued snowmelt after snow at the SNOTEL station has completely melted. Points on 

the positive x-axis with increases in SCE without increases in SWE are likely snow 

events at high elevations early in the season before the SOS threshold has been met. 
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Figure 14: Delta graphs of 8-day SCE vs 8-day SWE from the average water year for every study 

watershed containing at least one SNOTEL station for the (a) accumulation season, (b) ablation season, and 

(c) off-season. Metrics for watersheds with multiple stations were averaged. 
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Case Study 

Plotting 8-day SCE vs 8-day SWE for the Yellowstone River Watershed 

(GAGESII ID 06191500) gives us snow distribution curves for the lowest and highest 

elevation SNOTEL stations in the basin with elevations of 7350ft and 9400ft, 

respectively (see Figure 15). This was done for all 16 water years as well as for the 

average water year. There are five SNOTEL stations in this watershed, but only two are 

presented here as they demonstrate the range of variability in the watershed’s SCE-SWE 

relationship. 

Both SNOTEL stations in the Yellowstone River Watershed display the distinct 

hysteretic behavior found by Magand et al (2013) and illustrated by 8-day SCE and SWE 

in the study watersheds in Figure 13. Importantly, the shape of this behavior is preserved 

when the data is aggregated to the average water year (see Figure 16 (right)), 

demonstrating the applicability of this portion of the methodology (Section 2.4). As the 

elevation increases from one station to another, the ablation leg appears to swell at a 

much higher rate than the accumulation leg, creating a more open triangle at the higher 

elevation and indicating that ablation behavior changes much more rapidly with elevation 

than does accumulation behavior. 

Although there are many important variables for snowpack dynamics missing in 

this analysis, including aspect, shading, and slope, SCE metrics can still capture the key 

temporal inflection points in the snow season, namely the start of accumulation, the start 

of ablation, and the end of the snow season. Discrepancies in how well SCE metrics 

define the different seasons can be seen in how well SOS captures when the blue dots 

start to rise off the x-axis (gray to blue), how well SOMelt captures the peak of the loop 
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(blue to orange), and how well EOS captures the moment where points converge back 

near zero (orange to gray). These metrics appear to do a better job of capturing the snow 

season inflection points at the higher elevation station in this watershed, although they are 

still sufficiently captured in the lower elevation station. Points change from blue to 

orange right at the peak of the triangle meaning that the start of snow melt, as defined by 

SCE, matches that indicated by the first major decrease in SWE. Points then change from 

orange to grey near the convergence back to zero meaning that EOS successfully captures 

the true end of the snow season at this station. These metrics are based on the SCE across 

the entire watershed, so lower elevation stations may melt out more quickly than the 

metrics indicate. Once again, the importance of SNOTEL placement and elevation is 

highlighted. 

The delta graph for all 16 years in Yellowstone River Watershed in Figure 16 

(left) maintain the overall patterns found in Figure 14, and these patterns remain coherent 

in the average water year in Figure 16 (right), again demonstrating its usefulness as a 

simplifying concept. Accumulation points present mainly in the upper quadrants and the 

lower-left quadrant. It is captured more accurately in the higher elevation station where 

only two points fall just barely outside of the upper quadrants as opposed to the lower 

elevation where significant melt happens during the tail end of the identified 

accumulation season. Ablation presents mainly in the lower-left quadrant. In the lower 

elevation watershed, ablation points near the negative x-axis indicate a loss of SCE at 

higher elevations after all snow at this station has melted. In the average water year, all 

ablation points for the higher elevation station fall in the lower-left quadrant, as expected. 

Off-season patterns for this watershed are more well-defined than in Figure 14. The 
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majority of off-season points fall tightly around the y-axis, indicating no more snowmelt 

after the end of the ablation season. This may indicate how well these SNOTEL stations 

represent the overall behavior of the watershed. 

 

 

Figure 15: MODIS SCE versus SNOTEL SWE for the Yellowstone River Watershed for each 8-day period 

(left) and average 8-day period (right) using SNOTEL station (a) 670 and (b) 683. 
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Figure 16: Delta graphs of 8-day SCE versus 8-day SWE for all 16 water years (left) and the average water 

year (right) in Yellowstone River Watershed for SNOTEL stations (a) 670 and (b) 683. 

 

3.2.2 Streamflow 

Plotting 8-day SCE against 8-day streamflow for all watersheds demonstrates yet 

another example of hysteretic behavior between SCE and a hydrological indicator (see 

Figure 17). As with SWE, the differences are still associated with whether the watershed 
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is experiencing accumulation or ablation, but the relationship is notably different. 

Although the wide range of streamflows and peak SCE values across the 121 watersheds 

obscures some of the pattern, even after streamflow normalization, we can still 

characterize much of the accumulation season as low flow with higher flows happening 

on the right-hand side as snow begins to melt at lower elevations. As the snow melts 

during the ablation season, we begin to see streamflows spike and hit their maximums 

before attenuating. The off-season points hover around the lower-left corner, although 

summer rain and early ephemeral snow cause significant spikes in some watersheds. The 

shape of this response is henceforth referred to as a hysteresis loop in this study as it 

exhibits behaviors similar to hysteresis loops in other disciplines, such as that of soil 

water retention curves during wetting and drying cycles (Sławiński, 2011). The shape and 

size of the loop changes from watershed to watershed and shows great potential for 

watershed analysis using remotely-sensed snow cover. 
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Figure 17: SCE vs normalized streamflow for every 8-day period in the average water year for each study 

watershed. The snow season for each watershed was characterized to determine the timings of the 

accumulation, ablation, and off seasons. 

 

As with SWE, the delta graphs of SCE and streamflow are generated to gain 

further insight into the temporal and physical relationships between the two variables. 

Figure 18 demonstrates the behavioral differences between the accumulation and ablation 

seasons. During accumulation, we expect to see increases in SCE corresponding to either 

no change or a decrease in streamflow as the spring snowmelt pulse and summer rains 

work their way through the watershed. However, the relationship is ill-defined with 

53.5% of points having a positive change in streamflow. 27.8% of all points lie in the 

upper-right quadrant with positive changes in SCE and streamflow, indicating mid-

season melt events or winter storms that dump rain at lower elevations. However, only 
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4.06% of all points gave a change in streamflow greater than one positive standard 

deviation of 0.00642, implying that many streamflow fluctuations may be minor. 25.7% 

of all points fall in the upper-left quadrant and represent issues with the threshold method 

of pinpointing SOMelt that misattributes the beginning of the ablation season. Only 

1.19% of points have a negative change in SCE that corresponds to a negative change in 

streamflow greater in magnitude than one standard deviation. These points in the lower-

left quadrant may capture mid-season melt events where sublimation, rather than melt 

into a nearby stream, is the primary driver of snowpack loss. 

The ablation season shows a much stronger pattern between SCE and streamflow. 

Almost all points (94.8%) fall in the left quadrants, as we would expect since snow 

should be melting during this portion of the snow season. Decreases in SCE are met by 

both increases (54.3%) and decreases (40.4%) in streamflow, demonstrating the rise and 

attenuation of the spring snowmelt pulse. Streamflow increases until peak streamflow is 

attained and then decreases even though snowmelt is likely still contributing to the 

overall streamflow. The off-season captures the remaining spring pulse attenuation that 

occurs after the snow has melted, with 78.7% of points demonstrating a decrease in 

streamflow. 
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Figure 18: Delta graphs of 8-day SCE vs 8-day streamflow from the average water year for every study 

watershed for the (a) accumulation season, (b) ablation season, and (c) off-season. 
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Case Study 

Plotting 8-day SCE vs 8-day streamflow for the average water year for the 

Yellowstone River Watershed (GAGESII ID 06191500) gives better insight into how the 

relationship looks for a single, snow-dependent watershed (see Figure 19). For a single 

watershed, the shape of the SCE-streamflow response is more defined and provides a 

clear view of how the relationship changes throughout the seasons. During accumulation, 

the points are associated with a base streamflow for the watershed. Only during the end 

of the accumulation season does the streamflow increase due to the challenges of setting 

thresholds to characterize the season. During ablation, the streamflow steadily increases 

before reaching its peak and then attenuating. The off season is associated with decreases 

in streamflow from further attenuation of the spring pulse that then settles back near the 

base flow. 

The delta graph for this watershed in Figure 20 displays a much clearer 

relationship than for all watersheds in Figure 18, and that relationship is maintained in the 

average water year. Accumulation points lie almost entirely on the x-axis indicating no 

change in streamflow as the snowpack grows. This indicates that this watershed 

experiences little to no mid-season melt events on average, perhaps due to its low 

temperatures and inland location away from warm, ocean-powered storms. Ablation 

points lie in both quadrants on the left showing the rising and falling limbs of the spring 

pulse as SCE decreases and snow melts. The off-season captures the remaining 

streamflow attenuation before falling back to the base flow (i.e. no change in 

streamflow).  
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Figure 19: SCE versus streamflow for the Yellowstone River Watershed for each 8-day period (left) and 

average 8-day period (right). 

 

 

Figure 20: Delta graphs for 8-day SCE vs. 8-day streamflow for all 16 water years (left) and the average 

water year (right) of the Yellowstone River Watershed. 
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3.3 Snowpack-streamflow dynamics in hydrologically distinct watersheds 

The following case study of three hydrologically distinct watersheds in the U.S. 

Mountain West demonstrates how SCE and SCE-based metrics can be used to assess the 

snowpack-streamflow dynamics both between and within watersheds. Section 3.3.1 

provides a brief description of each watershed. Section 3.3.2 outlines the initial analysis 

involving characterization and comparison of watersheds through examination of their 

climate profiles, the relationships between SCE and streamflow and the relationship, and 

the variability of SCE and streamflow during the study period. This analysis is then done 

using only the hysteresis loops and delta graphs for each watershed to demonstrate the 

power of this study’s methodology in assessing snowpack-streamflow dynamics, as 

shown in Section 3.3.3. 

 

3.3.1 Watershed descriptions 

The Yellowstone River Watershed (GAGESII ID 06191500) is in northwestern 

Wyoming in the upper Rockies. It drains to the north with its outlet in southwestern 

Montana. It is the largest of the three watersheds, and one of the larger ones in this study, 

with a drainage area of 6783 km2. It is a high elevation watershed with elevations ranging 

from 1615 to 3609 m. According to the snow regimes classified by Trujillo and Molotch 

(2014), Yellowstone is a Continental watershed, meaning that its winter precipitation is 

dominated by storm fronts with below-freezing temperatures, and that it experiences a 

longer accumulation season with lower intensity precipitation and a later ablation 

(Serreze et al, 1999). 
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The Gila River Watershed (GAGESII ID 09430500) is in southwestern New 

Mexico in the arid Gila Wilderness Area near the borders of Arizona and Mexico and 

drains toward the southwest. It spans an especially large range of elevations, from 462 to 

3213 m, and has a drainage area of 4805 km2. The Gila is classified as an intermountain 

watershed by Trujillo and Molotch (2014). Intermountain watersheds exhibit temperature 

and precipitation trends in between those of wet, warm Pacific Coast watersheds and 

cold, dry Continental watersheds. According to Serreze et al (1999), Arizona/New 

Mexico watersheds experience a lower ratio of SWE to precipitation with a significant 

amount of precipitation falling outside of the snow season. The snow accumulation in any 

given year is highly dependent on temperature. 

The Upper Van Duzen River Watershed (GAGESII ID 11478500) is in northern 

California in the North Coast Range with its streamflow gage located roughly 40 km 

from the Pacific Ocean on the northwestern corner of the basin. It is a small, low 

elevation, transitional watershed with elevations ranging from 218 to 1695 m and a 

drainage area of only 572 km2. The Upper Van Duzen exhibits strong Maritime patterns 

according to Trujillo and Molotch (2014).  Snow accumulation is dominated by short, 

high precipitation winter storms caused by Atmospheric Rivers interacting with coastal 

mountains, allowing deep snowpacks to form over shorter accumulation seasons (Guan et 

al, 2010). Due to higher temperatures and spring rainfall, ablation happens earlier in 

Maritime watersheds. 
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Figure 21: Map of the three watersheds in this case study. Yellowstone River Watershed is in the upper-

right corner in northwestern Wyoming. Gila River Watershed is in the lower-right corner in southwest New 

Mexico. Upper Van Duzen Watershed is in the upper-left corner in northern California with a more detailed 

view in the inset in the lower-left corner. 
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Figure 22: Basin delineation and elevation for the Yellowstone River Watershed (GAGESII ID 06191500). 

The location of the U.S.G.S. streamgage is indicated by with a star. 

 

 

Figure 23: Basin delineation and elevation for the Gila River Watershed (GAGESII ID 09430500). The 

location of the U.S.G.S. streamgage is indicated by a star. 
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Figure 24: Basin delineation and elevation for the Upper Van Duzen River Watershed (GAGESII ID 

11478500). The location of the U.S.G.S. streamgage is indicated by a star. 
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3.3.2 Initial analysis of snowpack-streamflow dynamics 

These watersheds represent three distinct climate profiles with unique 

relationships between temperature and precipitation, as shown in Figure 25 and as 

indicated by the snow regimes in Trujillo and Molotch, 2014. All three temperature 

curves have a similar S-shape, signifying the general temperature trends of a temperate 

climate. However, on average, only the Yellowstone River Watershed experiences sub-

zero temperatures. In Yellowstone, the temperature falls below 0 °C for roughly half of 

the year, as is typical of a Continental watershed (Trujillo and Molotch, 2014). The Gila 

and Upper Van Duzen have a very similar temperature curve, although the Upper Van 

Duzen experiences higher temperatures for most months, especially during the winter 

from October to April. In the Gila, the average temperature never falls below 0 °C, 

although individual years and certain elevations certainly experience sub-zero 

temperatures periodically throughout the winter. Summer temperatures peak at nearly 

20°C in July. The Upper Van Duzen River Watershed has winter temperatures hovering 

between 5 and 10 °C with a peak just over 20°C in July. 

Despite their similar temperature curves, the Gila and the Upper Van Duzen 

experience very different precipitation patterns, in terms of both magnitude and timing, 

that ultimately differentiate their vastly different climates and snow regimes. The Gila 

receives only 458 mm of total precipitation in the average water year as compared to 

1705 mm in the Upper Van Duzen, reflecting the significantly wetter climate of the U.S. 

Pacific Coast. In the Gila, the majority of precipitation (~ 55%) falls between July and 

September as rain during the Southwest’s monsoon season. Less than 10% of the total 

precipitation falls in any month between October and April. In contrast, the Upper Van 
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Duzen experiences the majority of its precipitation (~ 78%) from November to March. 

However, the average winter temperatures indicate that not all of that precipitation falls 

as snow, which is expected of a transitional watershed where only the higher elevations 

receive snowfall. Only a total of 1.56% of precipitation falls from July to September 

when the Gila is experiencing high precipitation. The Yellowstone River Watershed sees 

steady precipitation from October to June, receiving an average of 9.34% of precipitation 

per month over that period. Precipitation decreases by roughly half from July to 

September during the warmest months with an average of 5.3% of precipitation per 

month. Total precipitation for the average water year is 747 mm. This moderate and 

steady precipitation is indicative of Yellowstone’s classification as a Continental 

watershed where snow accumulates slowly over a longer period. 
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Figure 25: Monthly (a) mean annual temperature (°C) and (b) proportion of total annual precipitation for 

the average water year for the Yellowstone River, Gila River, and Upper Van Duzen River Watersheds. 

The total annual precipitations for the average water year for Yellowstone, Gila, and Upper Van Duzen are 

747 mm, 458 mm, and 1705 mm, respectively. 
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As expected from their unique climate profiles, these watersheds also experience 

distinctly different relationships between SCE and streamflow and differing amounts of 

inter-annual variability within SCE and streamflow, as illustrated by Figure 26 and 

Figure 27. Figure 26 and Figure 27 show the distribution of SCE and streamflow, 

respectively, throughout the water year for water years 2001 to 2016 along with mean 

SCE and mean streamflow. Looking at the mean SCE and streamflow alone, these three 

watersheds present three unique snowpack-streamflow relationships. Yellowstone’s SCE 

increases rapidly to a plateau for the remainder of the season before starting to melt in 

early-May. Its streamflow indicates a typical spring pulse with streamflow increases 

beginning in late-April, reaching a peak of 0.048 cms/km2 in early June, and attenuating 

into the next accumulation season. Meanwhile, the Gila displays a mild, ill-defined spring 

pulse in February with a peak of 0.0023 cms/km2. A much bigger peak of 0.0031 

cms/km2 occurs in late September, corresponding to the summer monsoon. SCE during 

the main snow season appears bimodal with peaks in late-December and early-February 

with maximums of 0.52 and 0.43, respectively. SCE and streamflow in the Upper Van 

Duzen appear to move together with coinciding increases and decreases. As in the Gila, 

SCE is bimodal with peaks in late-December and early- to mid-March with values of 0.39 

and 0.30, respectively. Similarly, streamflow is bimodal with a large peak of 0.14 

cms/km2 and a smaller peak of 0.088 cms/km2. The first streamflow spike occurs in the 

same 8-day period as the first SCE peak, and the second occurs just one 8-day period 

after the second SCE peak, making a strong case for an elevation-dependent precipitation 

that falls as rain at lower elevations and snow at higher ones.  Streamflow remains near 

zero from June to October, indicating little to no summer precipitation in this region. 



www.manaraa.com

64 

 

 The 16-year distributions of SCE in Figure 26 and streamflow in Figure 27 

provide additional insight into hydrological variability in each of the watersheds. 

Yellowstone displays consistent SCE and streamflow values throughout the year. The 

highest SCE variability occurs during the end of the off-season and the beginning of the 

accumulation season due to early storms that cause the start of the snow season to 

fluctuate. Streamflow varies most during the ablation and off-season portions of the 

spring pulse, indicating differences in snowpack SWE between years. The Gila and 

Upper Van Duzen present similar SCE profiles with high variability during the 

accumulation and ablation seasons and low variability during the off-season with some 

noticeable, large rainfall events in the Gila. However, their streamflow distributions 

demonstrate very different hydrological dynamics. Upper Van Duzen experiences 

significant winter streamflow events throughout the accumulation and ablation seasons 

The Gila experiences occasional increases in streamflow throughout the water year with a 

notably consistent dry spell from late-May to mid-July before increased variability during 

the summer monsoon.  
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Figure 26: Distribution of SCE for the 8-day periods of all 16 water years divided by season along with the 

SCE and streamflow for the average water year for (a) Yellowstone River Watershed, (b) Gila River 

Watershed, and (c) Upper Van Duzen Watershed.  
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Figure 27: Streamflow for every 8-day period from 2000 to 2016 mapped against the period of the water 

year for the (a) Yellowstone River Watershed, (b) Gila River Watershed, and (c) Upper Van Duzen 

Watershed.  
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3.3.3 Compact analysis using hysteresis loops and delta graphs 

The hysteresis loop for Yellowstone, as explored in Section 3.2.2, is well-defined 

with an open structure that transitions smoothly between accumulation, ablation, and the 

off-season. Streamflow remains near base flow during accumulation and then begins to 

contribute significantly to the streamflow during ablation before attenuating back down 

to the base flow in the off-season. In contrast, the loops for the Gila and Upper Van 

Duzen are chaotic and do not form actual loop structures, although points still follow a 

general pattern of accumulation points on the bottom and right, ablation points on the top, 

and off-season points on the left. In the Gila, accumulation points mostly remain below 

ablation points, indicating the presence of a mild spring pulse as snow melts. Off-season 

points remain near zero SCE, but they cover a wide range of streamflows, including the 

peak streamflow, illustrating the impacts of the summer monsoon. The Upper Van Duzen 

River Watershed, displays yet another distinct pattern of snowpack-streamflow dynamics. 

Accumulation points quickly rise off the x-axis, indicating storms that contribute small 

increases in SCE at higher elevations and large amounts of rain at lower elevations that 

cause streamflow to increase instantaneously. In opposition to the ablation seasons in 

Yellowstone and the Gila, ablation points in the Upper Van Duzen do not contain a peak 

or represent any kind of spring pulse. Off-season points remain near the origin, indicating 

a dry summer with little to no remaining streamflow attenuation. 
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The delta graph for Yellowstone, as also explored in Section 3.2.2, shows clear 

functional differences between accumulation, ablation, and the off-season. It closely 

follows the trends found for all watersheds in Figure 18, although the accumulation 

season is better defined due to a lack of winter rain, shown by the proximity of the 

accumulation points to the x-axis. Ablation points lie in both quadrants on the left, as in 

Figure 18, showing the rising and falling limbs of the spring pulse as SCE disappears. 

The off-season captures the remaining streamflow attenuation in the lower-left quadrant 

before falling back to base flow, as indicated by points near the origin that indicate 

limited summer rain. The Gila and Upper Van Duzen show how watersheds that do not 

depend as heavily on winter snow present in a delta graph. The accumulation points for 

both are scattered across all four quadrants with changes in streamflow happening 

through the season, rather than just near the end. Ablation points for the Gila fall mostly 

in the lower-left quadrant, as expected, indicating a slight spring pulse. Ablation points 

for the Upper Van Duzen, however, are once again scattered throughout all four 

quadrants demonstrating a lack of a spring pulse and therefore a weak snowpack-

streamflow connection. Off-season points in the Gila fall along the y-axis with several 

large increases and decreases capturing the significant rainfall from the summer 

monsoon. Off-season points in the Upper Van Duzen fall close to the origin reflecting its 

dry summer. 
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Figure 28: Hysteresis loops (left) and delta graphs (right) for (a) Yellowstone River Watershed, (b) Gila 

River Watershed, and (c) Upper Van Duzen Watershed. 

 



www.manaraa.com

70 

 

4. Discussion 

4.1 SCE and inter-watershed variability 

To explore the potential of SCE for characterizing the snowpack-streamflow 

dynamics of mountain watersheds, SCE-based metrics compared to key climate, 

snowpack, and streamflow variables. These metrics were generated for each watershed 

from the SCE curve for the average water year to capture key temporal inflection points 

(SOS, SOMelt, and EOS) and the overall shape of the curve (AvgSCE). 

SCE-based metrics showed strong correlations to the average annual temperature, 

demonstrating that they capture hydro-climatological variations between watersheds. 

AvgAnnualTemp had a significant linear relationship with all four SCE-based metrics. 

This is evidence that SCE metrics may provide valid insight into how snowpack-

streamflow dynamics change between watershed, supporting the remainder of the 

analysis in this study. Higher temperatures correlated to an earlier SOMelt and EOS and a 

later SOS, meaning that the snow season contracts in warmer climates as found in 

previous research (Musselman et al, 2017; Yang et al, 2007). Conversely, the snow 

season expands in watersheds with lower average temperatures. Because both the start 

and end of the snow season are affected by warmer temperatures, this amplifies their 

impact on mountain watersheds. Higher temperatures are also correlated with decreasing 

AvgSCE, indicating less overall snowpack in warmer climates. These trends could 

potentially be seen within a single watershed with SCE-metrics calculated for two 

different time periods. This type of analysis could be used to explore the impacts of 

climate change on watershed dynamics. Precipitation has a weak relationship with EOS 
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and no significant relationship with other SCE-based metrics as supported by Yang et al, 

2007 who found that SWE was not significantly related to precipitation. 

Snow cover extent had a complex relationship with snow water equivalent that 

highlights the key differences between spatial and point measurements. Significant linear 

relationships between SQRT(PeakSWE) and the following SCE-based metrics – SOMelt, 

EOS, and AvgSCE – indicate that SCE may be useful in inter-watershed analysis of 

snowpack dynamics. Although the strength of this relationship was only moderate, it was 

more than anticipated given that SCE measures the presence of snow over a large spatial 

extent while SWE measures snow water content at a single point. Additional 

discrepancies between SCE and SWE were partially accounted for by including elevation 

into the regression analysis to represent its role in the spatial variability of SWE across a 

watershed. Introducing elevation into the regression increased the strength of the 

relationships for SOMelt and AvgSCE and brought SOS into significance. However, it 

did not improve the model fit for EOS, suggesting that the end of the season may not 

respond to the same drivers as the other metrics or at least not respond in the same way. 

Differences in snowpack depth and water content between watersheds due to climate 

patterns likely account for a large portion of the remaining variability in the models. 

Further analysis is needed to assess how much of the effect of adding elevation into the 

analysis is due to the elevation-dependence of snowpack versus the impact of distinct 

climates that occur at different elevation ranges due to the topographical patterns of the 

Western U.S. The effect of SNOTEL placement on the SCE-SWE relationship is another 

key avenue for further research to better understand their complex connection.  
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SCE-based metrics also had a significant inter-watershed relationship with peak 

streamflow (PeakQ) that supports the use of SCE in characterizing and analyzing 

snowpack-streamflow dynamics. SQRT(PeakQ), transformed for normality, had a 

significant linear relationship with all four SCE-based metrics, implying that a longer 

snow season and later melt correspond to higher PeakQ values, as seen in Yang et al, 

2003. The results indicate that SCE captures important snowpack dynamics in terms of 

both timing (SOS, SOMelt, and EOS) and magnitude (AvgSCE) that contribute to 

streamflow. Including precipitation into the analysis of AvgSCE increased the model fit 

by more than double. AvgAnnualPPT captures a significant portion of the inter-

watershed variability of SWE that leads to differences in streamflow, perhaps serving to 

differentiate between deep and shallow snowpacks. In warmer watersheds, 

AvgAnnualPPT may also be capturing low elevation rainfall that causes streamflow 

peaks outside of a spring pulse, such as in the Upper Van Duzen River Watershed. This 

indicates that precipitation from climate models and monitoring networks shows promise 

in supplementing SCE in the analysis of snowpack-streamflow dynamics in watersheds 

without detailed in-situ snowpack data. 

 

4.2 SCE and intra-watershed patterns 

Based on the results from inter-watershed variability, snow water equivalent and 

streamflow were further analyzed to determine their potential for capturing hydrological 

patterns within a watershed. Climate variables were not used for this portion of the 

analysis as the temporal resolution of the PRISM dataset was too coarse to allow for 
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further examination. Future work could include the daily PRISM data to further examine 

the impact of temperature on SCE for an average water year. 

SCE displayed a distinct seasonal hysteresis with SWE that mimics that found in 

Magand et al (2013) using snowpack depth. During accumulation, SCE and SWE reveal 

a logarithmic relationship with quick increases in SCE that saturate near 1.0 leading to 

asymptotic behavior. During ablation, SCE decreases more slowly and with greater 

variability, with every SCE value associated with a much larger range of SWE values 

than during accumulation. Magand et al (2013) attributes this hysteresis to the fact that 

snow accumulation tends to happen more uniformly over a watershed while snow 

ablation is preferential and affected more by topographic variations such as aspect and 

shading. In addition, shallow snow during the early accumulation season means that a 

high SCE may occur during a relatively low SWE. Discrepancies between shallow and 

deep snowpacks are also dampened during accumulation due to saturation of SCE near 

1.0, which is not the case during ablation. This pattern is better demonstrated by the 

Yellowstone River Watershed, which displays a pronounced hysteresis and shows how 

ablation is affected by elevation across SNOTEL stations. 

The delta graphs of SCE and SWE more clearly illustrate the differences between 

these two measurements as snowpack indicators. If SCE and SWE were perfectly related 

and the snow season was perfectly characterized, then all accumulation points would lie 

in the upper-right quadrant and all ablation points would lie in the lower-left quadrant. 

Put differently, all increases in SCE would be met with increases in SWE and would be 

classified as accumulation points. Similarly, all decreases in SCE would be met with 

decreases in SWE and would be classified as ablation points. Several factors prevent this 
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from occurring. First, determining the start of snow melt from SCE alone is prone to 

errors due to data irregularities, system complexity, and spatial heterogeneity of snow 

melt timing. Therefore, the start of snowmelt, as determined by SCE, may not line up 

with the start of snow melt of a specific SNOTEL station at a specific elevation. This 

elevation-dependence is demonstrated in Figure 16 using two SNOTEL stations at 

different elevations in the Yellowstone River Watershed. This source of error manifests 

as accumulation points that exhibit ablation behavior and vice versa. In addition, 

intermittent snow cover loss may occur at lower elevations throughout the season. Thus, 

moderate decreases in SCE may occur due to melt at lower elevations later in the season 

while the high elevation SNOTEL stations are still receiving snowfall. This discrepancy 

manifests as accumulation points in the upper-left quadrant where SCE and SWE are 

seemingly at odds over the current state of the snow season. 

Despite these idiosyncrasies, the delta graphs of SCE and SWE demonstrate that 

all three seasons are well-defined with distinct relationships. The majority of 

accumulation (~ 91%) and ablation (~ 89%) points, as defined using SCE and the 

methods in Section 2.6, correspond to positive and negative SWE values, respectively. 

Therefore, although changes in SCE and SWE may not always correspond in magnitude, 

they are well-correlated with regards to sign. Furthermore, each season displays a unique 

SCE-SWE relationship that can be used to better understand the dynamics between these 

two snowpack measurements and to develop better methods for using SCE. Further 

refinements in the snow season characterization methods outlined in Section 2.6 can be 

evaluated by assessing how well they improve the outliers in the current delta graphs. 
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The hysteretic nature of the SCE-SWE relationship highlights the challenges 

faced by comparing spatial and point measurements of the same variable. Although 

complex, the relationship between SCE and SWE is much stronger than anticipated with 

a clear temporal component as exhibited by the seasonal trends displayed in Figure 13 

and Figure 14. This must be accounted for in hydrological studies that aim to integrate 

snow cover extent into their models. 

As with SWE, the SCE-streamflow relationship also displays hysteretic behavior 

that captures the fundamental differences between the accumulation and ablation seasons. 

During accumulation, streamflow is generally low, although watersheds with significant 

hydrological inputs other than snowmelt may display higher streamflow. This streamflow 

increases during the latter part of the accumulation season as snow begins to melt (Yang 

et al, 2003; Yang et al, 2007). The biggest spikes in streamflow can be seen during the 

ablation season as snowmelt makes its way to the rivers and then attenuates. This study 

refers to this pattern as a hysteresis loop after similar patterns in soil water retention 

curves (Sławiński, 2011). A look at the hysteresis loop for Yellowstone River Watershed 

makes the SCE-streamflow relationship for snow-dependent watersheds more obvious 

with a flat slope during accumulation and then rising and falling limbs to match the 

spring pulse during ablation. 

The delta graphs for SCE and streamflow demonstrate volatility during the 

accumulation season and a much clearer relationship during ablation. Over half of the 

accumulation points (53.5%) demonstrate an increase in streamflow, implying that the 

relationship between SCE and streamflow during accumulation is complex and varies 

widely between watersheds and climates. Lower elevation rain and mid-season melt 



www.manaraa.com

76 

 

events obscure the connection between the snowpack and streamflow. This connection is 

also greatly affected by the threshold method of snow season characterization which 

necessarily labels the first few periods of the ablation season as accumulation. The delta 

graph for Yellowstone River Watershed in Figure 20 shows what an accumulation pattern 

looks like for a snow-dependent watershed with no outside streamflow sources. Future 

improvements should be focused at better identification of the start of snow melt, which 

will require grappling with disparate SCE-curves across watersheds. In contrast to 

accumulation, the SCE-streamflow relationship is especially well-defined during the 

ablation season. This is promising as ablation is the most essential season for assessing 

how and when snowmelt reaches our rivers. Further streamflow attenuation occurs in the 

off-season. Integrating streamflow into the snow season characterization process may 

allow for better delineation of the spring pulse. However, early attempts at this showed 

that this method struggled with signals from winter rainfall and summer monsoons in 

watersheds without a defined spring pulse. This was not pursued further in this study as 

the focus was on the ability of SCE to characterize the season alone. 

 

4.3 Snowpack-streamflow dynamics in hydrologically distinct watersheds 

The analysis of three watersheds with distinct climate profiles and hydrological 

behaviors illustrates how these differences are expressed in the relationship between SCE 

and streamflow. Yellowstone River Watershed displays the quintessential behavior of a 

snowmelt-dependent watershed in the inner United States with low inter-annual 

variability. SCE increases rapidly until it reaches and maintains saturation from late-

November to mid-April before melting into a classic spring pulse that peaks and then 
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retreats to base flow. In contrast, the Gila River Watershed demonstrates how SCE and 

streamflow look for a warm, dry Southwestern basin with a strong summer monsoon 

signal. SCE only covers half of the watershed at its peak, quickly melts, and is associated 

with only a moderate spring pulse. A large peak in streamflow in September captures the 

relative influence of the summer monsoon as compared to water from the winter 

snowpack. The warm climate and uncertain winters create a large amount of interannual 

variability in both SCE and streamflow. The Upper Van Duzen River Watershed 

represents a warm, coastal basin with a winter precipitation that does not reliably fall as 

snow. The SCE-streamflow relationship indicates that winter storms that increase SCE 

also increase streamflow as rain falls at lower elevation. No real spring pulse is 

discernable, and the summer months are extremely dry, in stark contrast to the Gila. 

The compact analysis demonstrates how methods developed in this study can be 

used to quickly and robustly classify the snowpack-streamflow dynamics of a watershed. 

The distinct hydrological behaviors identified in Section 3.3.2 through a more rigorous 

analysis can be derived in a compact and visually-descriptive way using hysteresis loops 

and delta graphs as shown in Figure 28. Although delta graphs are simply a permutation 

of the hysteresis loop, they provide a unique view of the data dynamics. The snow-

dependent, consistent Yellowstone River Watershed presents as a clear, open hysteresis 

loop, and its delta graph displays well-defined seasonal behaviors. The monsoon-

dependent Gila River Watershed with high interannual variability and moderate spring 

pulse presents as a collapsed loop with high streamflows during the off-season. Its delta 

graph shows an ill-defined accumulation pattern with an ablation pattern that vaguely 

captures the spring pulse and an off-season that clearly shows the effects of monsoon 
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events. The Upper Van Duzen Watershed, with its winter rains and lack of clear spring 

pulse, creates a collapsed loop that shoots out at a diagonal from the origin with the 

winter rain made clear by the accumulation points rising from the x-axis. The disconnect 

between snow and streamflow is apparent in the delta graph where the accumulation and 

ablation seasons lack any meaningful relationships while the off-season simply reflects 

the area’s dry summers. 

Notably absent from the compact analysis is the inter-annual variability found in 

the initial analysis, but this can be hypothesized from the regularity of the loop. A classic 

loop structure as seen in Yellowstone implies consistent snow seasons while the lack of a 

clear loop in both the Gila and Upper Van Duzen indicate higher variability that comes 

with an inconsistent snow season. A strong snow season stabilizes a watershed, providing 

consistent water every year around the same time. Transitional watersheds like the Gila 

and Upper Van Duzen, in contrast, are highly variable with both rain and snow and an 

unstable relationship between snow and streamflow from year to year. 

These compact methods can be used to quickly characterize and classify 

watersheds for further hydrological study. For example, watersheds with distinct 

hydrological behaviors can be identified by comparing their hysteresis loops and delta 

graphs as in Section 3.3.2. The inverse may also be done for those seeking hydrologically 

similar watersheds to control for hydrology in ecological, biological, and similar studies. 

These two visualizations also provide a solid foundation for generating future 

hypotheses about the impacts of climate change. The Upper Van Duzen shows an 

extreme disconnect between the water supply (rainy winter) and the water demand (dry 

summer) with the majority of streamflow occurring during the winter and fully 
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attenuating before the dry season. Therefore, the effects of climate change on water 

supply may be mitigated with the construction of water reservoirs for human use during 

the summer. The Gila’s dependence on the summer monsoon indicates that its resources 

would be most at risk from climate change effects that impact that monsoon.  Due to its 

high interannual variability, small increases in temperature could also cause a substantial 

decrease in its snowpack reserves, devastating ecosystems that depend on that moderate 

spring pulse. Similarly, decreased snowpacks under higher temperatures could greatly 

affect the dynamics of the Yellowstone River Watershed. Since watersheds like 

Yellowstone currently provide a consistent water supply, changes in their snowpack-

streamflow dynamics could have profound and unanticipated ramifications. 

 

4.4 Guidelines for the use of snow cover extent 

SCE as a representation of snowpack works best in climates with intermittent 

cloud cover that allows the MOD10A2 compositing algorithm to capture at least one 

clear image every eight days. Smoothing algorithms can help in areas where cloud cover 

is intermittent, short-lasting, and does not occur consistently in any given time frame 

every year. Analysis using the average water year concept as outlined in Section 2.4 also 

helps to limit yearly cloud cover effects. 

Although SCE saturates in watersheds with heavy, consistent snowpack, SCE 

metrics like those used in this study can be used to accurately capture snow season 

dynamics and characterize watersheds for comparison. However, saturation may hinder 

analyses that require a high degree of differentiation of during peak season or depend on 

knowledge of the depth or water content of the snowpack.  
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5. Conclusion 

The goal of this study was to assess and demonstrate the suitability of snow cover 

extent for characterization and analysis of snowpack-streamflow dynamics of mountain 

watersheds. This goal was met by assessing the ability of SCE and SCE-based metrics to 

(a) capture inter-watershed variability with respect to climate, SWE, and streamflow; (b) 

capture intra-watershed patterns with respect to SWE and streamflow; and (c) 

characterize and differentiate between the snowpack-streamflow dynamics of 

hydrologically distinct watersheds in the U.S. Mountain West. Metrics for describing the 

critical temporal inflections in the SCE curve (SOS, SOMelt, and EOS) as well as the 

overall shape of the curve (AvgSCE) were developed to allow for the characterization of 

the snow season using only remotely-sensed snow cover extent, as described in Section 2. 

Snow cover, snow water extent, streamflow, and climate data from October 2000 to 

September 2016 were processed and compressed into an average water year (see Section 

2.4) for each of the 121 study watersheds. 

 Analysis of SCE-based metrics between watersheds revealed significant 

relationships between SCE and climate variables, SWE, and streamflow.  A strong 

relationship between average annual temperature and all SCE-based metrics showed 

SCE’s ability to capture the effects of climate on snowpack and prompted further 

analysis. Correlations between PeakSWE and three of the SCE-based metrics 

demonstrated that SCE also captured much of the behavior measured by the more 

commonly used, but more difficult to acquire, snow water equivalent. Similar 

correlations between peak streamflow and SCE-based metrics supported further 
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exploration of SCE in characterizing and analyzing watershed snowpack-streamflow 

dynamics within a watershed. 

 Analysis of the intra-watershed patterns of SCE, SWE, and streamflow further 

demonstrated the ability of SCE and SCE-based metrics to capture snowpack-streamflow 

dynamics at the watershed level. These analyses revealed significant hysteresis in both 

the SCE-SWE and SCE-streamflow relationships, providing a visual representation of the 

fundamental differences between snowpack dynamics in the accumulation and ablation 

seasons. The SCE-SWE hysteresis serves to illuminate the complex relationship between 

point and spatial measurements, such as the saturation of the spatial domain that can 

occur in SCE. The hysteresis in the SCE-streamflow relationship serves to delineate 

seasonal dynamics and is harnessed as an analytical tool for the next portion of the 

analysis. 

 The power of hysteresis loops and delta graphs for the analysis of watershed 

dynamics is demonstrated in Section 3.3 by characterizing and comparing three 

hydrologically and climatologically distinct watersheds. Yellowstone River Watershed 

represents a snowpack-dependent, consistent, inner-continental basin; Gila River 

Watershed represents a monsoon-dependent, warm, Southwest basin with a relatively dry 

winter; and Upper Van Duzen River Watershed represents a coastal, transitional basin 

with a dry summer and wet, rainy winter. Background research and initial analysis using 

SCE and streamflow were done to develop a comprehensive profile for each watershed. 

Compact analysis using hysteresis loops and delta graphs were then executed and were 

able to illustrate the differences in their snowpack-streamflow dynamics in a visually-

compelling and unique way. These two analytical tools provide an opportunity for 
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researchers to perform more efficient watershed selection and preliminary analysis as 

well as to develop new hypotheses related to climate change, ecology, and other water-

related disciplines. 

 This study demonstrated that SCE is capable of accurately capturing snowpack-

streamflow dynamics at the watershed level. SCE and SCE-based metrics provide a 

unique opportunity for studying remote and unmonitored regions and for approaching 

snowpack-streamflow analysis from a unique perspective in watersheds with existing 

snowpack monitoring systems. Future work should include better cloud removal and 

further investigation of the complex relationship between SCE and SWE to increase the 

applicability of SCE-based metrics. Furthermore, refinement of the methodology for 

obtaining those metrics would improve the ability of the hysteresis loops and delta graphs 

to communicate snowpack-streamflow dynamics. Expanding analysis to mountain ranges 

on different continents and in varying climates would aid in this refinement as well as 

expand understanding of the full range of possible hydrological responses in mountain 

watersheds. SCE-based metrics can also be used to set a reference point to which future 

changes in snowpack can be compared to analyze the impact of climate change on the 

world’s water supply. 
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Appendices 

Appendix A: Term definitions 

Term Definition 

SOS 
Start of the snow season. This marks the beginning of the 

accumulation season as snow begins to fall. 

SOMelt 
Start of snow melt. This marks the beginning of the ablation season 

as the snowpack begins to melt and make its way to the streams. 

EOS 
End of the snow season. This marks the end of the ablation season 

when almost all the snowpack has melted. 

AvgSCE 
Average SCE. This captures some portion of the overall shape of the 

SCE curve. 

POWY 

Period of the water year. This is the 8-day period as a function of the 

water year so 1 marks the first period in October and 46 marks the 

last period in September. 

AvgAnnualTemp 
Average annual temperature. This value is derived from the mean 

temperature datasets from PRISM. 

AvgAnnualPPT 
Average annual precipitation. This value is derived from the mean 

precipitation datasets from PRISM. 

PeakSWE 
Peak snow water equivalent. This value is the maximum SWE for 

the average water year of a watershed. 

PeakQ 
Peak streamflow. This value is the maximum streamflow for the 

average water year of a watershed. 

 

Appendix B: SCE smoothing algorithm 

 A smoothing algorithm was developed and applied to the original 8-day SCE data 

for water years 2001 to 2016. The snow cover extent (SCE) and cloud cover extent 

(CCE) for the average water year was generated from this smoothed data. Note that CCE 

is unaffected by the smoothing process and represents the original CCE. To better 

demonstrate the abilities and results of this algorithm, two watersheds are compared 

below, one of which has a snow-cloud relationship amenable to simple smoothing and 
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one which does not. Note that the figures below represent the average water years after 

smoothing, but the smoothing algorithm was applied to the full 16-year period. 

Figure 29 and Figure 30 show the effect of the smoothing algorithm for watershed 

06191500 in the Upper Rockies and watershed 12035000 in the Pacific Northwest, 

respectively. Watershed 06191500 was retained for the remainder of the analysis based 

on its low cloud ratio of 0.1843. Watershed 12035000 was rejected based its high cloud 

ratio of 1.193. The cloud ratio and final watershed selection is described in Section 2.5. 

Watershed 06191500 worked well with the smoothing algorithm as increases in cloud 

cover generally corresponded to similar decreases in SCE, as demonstrated in Figure 29. 

Smoothing led to a nice even plateau during the main snow season that more accurately 

captures the snowpack dynamics of the watershed. In contrast, watershed 12035000 

shows no relationship between changes in cloud cover and snow cover, as illustrated in 

Figure 30, that allow it to be accurately smoothed using the current method.  Its high 

CCE, low SCE, and its incompatibility with the smoothing algorithm lead to its high 

cloud ratio. 
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Figure 29: Snow cover extent (SCE) before and after smoothing along with the cloud cover extent (CCE) 

for watershed 06191500 in the Upper Rockies. The cloud ratio is 0.1842. 

 

Figure 30: Snow cover extent (SCE) before and after smoothing along with the cloud cover extent (CCE) 

for watershed 12035000 in the Pacific Northwest. The cloud ratio is 1.193. 
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The following Python script was used to smooth the original SCE data for every 8-

day period for water years 2001 to 2016 as detailed in Section 2.2. 

1. import re   
2. import csv   
3. import os   
4. import sys   
5.    
6. ###########################################   
7. ### Input: text file with gage ID's for each basin. These gage IDs are used to g

et the appropriate   
8. ### CSV from "../Results_SCE_Unsmoothed/" that contains 8-

day SCE data to be smoothed.   
9. ###   
10. ### Output: (1) CSV file for entire time period with SCE-percent for each 8-

day period. The data will   
11. ### now be smoothed by determining which days experience simulataneous high clou

d cover and a sudden drop in   
12. ### snow cover. These gaps will be filled by interpolation.   
13. ### (2) CSV file for 16-year average using smoothed 8-day values.   
14. ###########################################   
15.    
16. ### Define the workspace (but NOT the arcpy.env.workspace)   
17. workspace = "D:/Thesis/"   
18.    
19. ### Get the text file of gage ID's from the command line.   
20. if len(sys.argv) != 2:   
21.     print "Need this form: python modis-sce-smooth.py <gage_IDs.txt>"   
22.     print sys.argv   
23.     sys.exit()   
24.    
25. gageFilename = sys.argv[1]   
26.    
27. ### Open the gage ID file and create a list of the gage IDs.   
28. gageFile = open(gageFilename, 'r+')   
29. reader = csv.reader(gageFile, delimiter=',')   
30.    
31. gages = []   
32. for row in reader:   
33.     # QC for row format   
34.     if len(row) != 1:   
35.         print "Improper text file format. One gageID per row: %s" % row   
36.         sys.exit()   
37.        
38.     # Get the gage ID and add it to the "gages" list.   
39.     gages.append(row[0])   
40.    
41. ############# 
42. ### Main. ### 
43. #############   
44. for gageID in gages:   
45.        
46.     print "Processing gage %s" % gageID   
47.        
48.     ### Locate the SCE file name "sce-weekly-<gageID>.csv".   
49.     sceFilename = os.path.join(workspace, "Results_SCE_Unsmoothed/sce-weekly-

%s.csv" % gageID)   
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50.     if not os.path.exists(sceFilename):   
51.         print "The snow directory does not exist: %s" % sceFilename   
52.         sys.exit()   
53.            
54.        
55.     ######################################   
56.     ### Read in the SCE and Cloud data ###   
57.     ######################################   
58.     periodInWY = []   
59.     sceOrig = []   
60.     cloudOrig = []   
61.     beforeRows = []   
62.     afterRows = []   
63.        
64.     sceFile = open(sceFilename, 'r+')   
65.     sceReader = csv.reader(sceFile, delimiter=',')   
66.        
67.     # Save the header for writing out.   
68.     header = sceReader.next()   
69.        
70.     # Get period in WY, sce, and cloud %.   
71.     # Save the rest of the row for writing to file.   
72.     for row in sceReader:   
73.         beforeRows.append(row[0:4])   
74.         periodInWY.append(float(row[2]))   
75.         sceOrig.append(float(row[4]))   
76.         cloudOrig.append(float(row[5]))   
77.         afterRows.append(row[6:])   
78.            
79.     # Set record length, N.   
80.     N = len(sceOrig)   
81.     if len(cloudOrig) != N:   
82.         print "SCE and Cloud arrays have different lengths: %d != %d" % (N, len(

cloudOrig))   
83.         sys.exit()   
84.            
85.     ######################################################################   
86.     ### Initialize a data dictionary to calculate averages at the end. ###   
87.     ######################################################################   
88.    
89.     dataDictionary = {}   
90.     cloudDictionary = {}   
91.     for i in range(1, 47):   
92.         dataDictionary[i] = []   
93.         cloudDictionary[i] = []   
94.        
95.        
96.     ##################################   
97.     ### Process SCE and Cloud data ###   
98.     ##################################   
99.        
100.     ### Loop through the SCE data.   
101.     isSnowSeason = False   
102.     sceFilled = [sceOrig[0]]   
103.     dataDictionary[1].append(sceOrig[0]) # Add first entry to data dicti

onary.   
104.     buffer = []   
105.     for i in range(1, N):   
106.            
107.         sce = sceOrig[i]   
108.         cloud = cloudOrig[i]   
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109.            
110.         ### Check if isSnowSeason needs to change.   
111.         if sce >= 0.1 and not isSnowSeason:   
112.             isSnowSeason = True   
113.         elif sce < 0.1 and cloud < 0.1 and isSnowSeason:   
114.             isSnowSeason = False   
115.    
116.         ### If we're in the snow season, add the index to the buffer to  
117.         ### be smoothed through linear interpolation.   
118.         if isSnowSeason and cloud >= 0.1 and i > 0:   
119.            
120.             # Add the index to the buffer.   
121.             buffer.append(i)   
122.                
123.         elif len(buffer) > 0:   
124.            
125.             ### Process the records in the buffer using linear    
126.             ### interpolation across the span of the records.   
127.             gapLength = len(buffer)   
128.             beforeIndex = buffer[0] - 1   
129.             afterIndex = buffer[gapLength-1] + 1   
130.                
131.             beforeSCE = sceOrig[beforeIndex]   
132.             afterSCE = sceOrig[afterIndex]   
133.                
134.                    
135.             ### Fill in all gaps, to create a linear change between the  
136.             ### good (i.e. low cloud cover) records on either side.   
137.             deltaGap = (afterSCE - beforeSCE) / (gapLength + 1)   
138.             for j in range(gapLength):   
139.                 gapIndex = buffer[j]                   
140.                 newSCE = beforeSCE + deltaGap * (j + 1)   
141.                    
142.                 cloudCurr = cloudOrig[beforeIndex + j + 1]   
143.                 sceCurr = sceOrig[beforeIndex + j + 1]   
144.                 cloudSCE = cloudCurr + sceCurr   
145.                    
146.                 if newSCE > cloudSCE:   
147.                     newSCE = cloudSCE   
148.    
149.                    
150.                 ### Keep the original SCE if it's larger than the interp

olated one.   
151.                 origSCE = sceOrig[gapIndex]   
152.                 if newSCE < origSCE:   
153.                     newSCE = origSCE   
154.                    
155.                 sceFilled.append(newSCE)   
156.                 dataDictionary[periodInWY[gapIndex]].append(newSCE)   
157.                    
158.                 ### Add clouds to appropriate period in cloudDictionary.

   
159.                 cloudCurr = cloudOrig[gapIndex]   
160.                 cloudDictionary[periodInWY[gapIndex]].append(cloudCurr) 

  
161.                   
162.                
163.             ### Reset buffer.   
164.             buffer = []   
165.                
166.             ### Append the afterSCE to sceFilled.   
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167.             sceFilled.append(afterSCE)   
168.             dataDictionary[periodInWY[afterIndex]].append(newSCE)   
169.    
170.             ### Add the clouds to appropriate period in cloudDictionary.

   
171.             cloudCurr = cloudOrig[afterIndex]   
172.             cloudDictionary[periodInWY[afterIndex]].append(cloudCurr)   
173.                
174.         else:       
175.             ### Add the SCE to the filled data.   
176.             sceFilled.append(sce)   
177.                
178.             ### Add the SCE to the appropriate period in dataDictionary.

   
179.             dataDictionary[periodInWY[i]].append(sce)   
180.                
181.             ### Add the clouds to appropriate period in cloudDictionary.

   
182.             cloudCurr = cloudOrig[i]   
183.             cloudDictionary[periodInWY[i]].append(cloudCurr)   
184.    
185.                
186.         ### Increment i.   
187.         i = i + 1   
188.                
189.                
190.     ##################################   
191.     ### Write out the filled data. ###   
192.     ##################################   
193.        
194.     ### Open the output file and write the header.   
195.     outfileName = os.path.join(workspace, "Results_SCE/sce-weekly-

%s.csv" % gageID)   
196.     outfile = open(outfileName, 'wb')   
197.     writer = csv.writer(outfile, delimiter=',')   
198.     writer.writerow(header)   
199.    
200.     for i in range(N):   
201.         outRow = beforeRows[i]   
202.         outRow.append(sceFilled[i])   
203.         outRow.append(cloudOrig[i])   
204.         outRow.extend(afterRows[i])   
205.            
206.         writer.writerow(outRow)   
207.        
208.     ### Close the output file.   
209.     outfile.close()   
210.    
211.        
212.     #######################################################   
213.     ### Calculate and write out the long-term averages. ###   
214.     #######################################################   
215.    
216.     ### Open a new file to write out the long-term averages.   
217.     outfileName = os.path.join(workspace, "Results_SCE/sce-averages-

%s.csv" % gageID)   
218.     outfile = open(outfileName, 'wb')   
219.     writer = csv.writer(outfile, delimiter=',')   
220.     writer.writerow(['Period in WY', '% Snow', '% Cloud'])   
221.    
222.     # Calculate and write out average percentages for each category.   
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223.     for period in range(1, 47):   
224.         sceData = dataDictionary[period]   
225.         cloudData = cloudDictionary[period]   
226.    
227.         # Calculate the average for sce and cloud.   
228.         avgSCE = sum(sceData)/len(sceData)   
229.         avgCloud = sum(cloudData)/len(cloudData)   
230.    
231.         # Write out to file.   
232.         outrow = [period, avgSCE, avgCloud]   
233.         writer.writerow(outrow)   
234.    
235.     # Close the output file.   
236.     outfile.close()   
237.    
238. print "Done!"   

 

 

Appendix C: Snow season characterization 

The figures below show the SCE (solid blue line) and streamflow (dashed orange 

line) curves for the average water year of each watershed. Each figure is labeled with the 

primary metrics used in this analysis – SOS, SOMelt, EOS, and AvgSCE. AvgSCE is 

represented by the dotted horizontal line and the remaining metrics are represented by 

solid horizontal lines. 
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The script below takes the snow cover extent for the average water year for each 

watershed and calculates the appropriate SCE metrics as detailed in Section 2.6. 

1. import re   
2. import csv   
3. import os   
4. import sys   
5.    
6.    
7. ###########################################   
8. ### Input: text file with gage ID's for each basin. These gage IDs are used to g

et the appropriate   
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9. ### CSV from "../Results_SCE/" that contains 8-
day SCE data for an "average" water year.   

10. ###   
11. ### Output: CSV file with each line as the SCE metrics for a given gage.   
12. ###########################################   
13.    
14. ### Define the workspace (but NOT the arcpy.env.workspace)   
15. workspace = "D:/Thesis/"   
16.    
17. ### Get the text file of gage ID's from the command line.   
18. if len(sys.argv) != 2:   
19.     print "Need this form: python modis-sce-metrics.py <gage_IDs.txt>"   
20.     print sys.argv   
21.     sys.exit()   
22.    
23. gageFilename = sys.argv[1]   
24. inputFolder = os.path.join(workspace, "Results_SCE/")   
25.    
26. ### Open the gage ID file and create a list of the gage IDs.   
27. gageFile = open(gageFilename, 'r+')   
28. reader = csv.reader(gageFile, delimiter=',')   
29.    
30. gages = []   
31. for row in reader:   
32.     # QC for row format   
33.     if len(row) != 1:   
34.         print "Improper text file format. One gageID per row: %s" % row   
35.         sys.exit()   
36.        
37.     # Get the gage ID and add it to the "gages" list.   
38.     gages.append(row[0])   
39.    
40. ### Open the output file and write the header.   
41. outfileName = os.path.join(workspace, "Results_Metrics/sce-metrics.csv")   
42. outfile = open(outfileName, 'wb')   
43. writer = csv.writer(outfile, delimiter=',')   
44. writer.writerow(['Gage ID', 'SOS', 'EOS', 'LOS', 'Min SCE', 'POWY Min SCE', 'Pea

k SCE', 'POWY Peak SCE', 'Avg Peak SCE', 'Avg SCE', 'SOMain', 'SOMelt', 'Persist
ence', 'LOMelt'])   

45.    
46. ############ 
47. ### Main ### 
48. ############ 
49. for gageID in gages:   
50.        
51.     print "Processing gage %s" % gageID   
52.        
53.     ### Locate the sce file labeled "sce-averages-<gageID>.csv".   
54.     sceFilename = os.path.join(inputFolder, "sce-averages-%s.csv" % gageID)   
55.     if not os.path.exists(sceFilename):   
56.         print "The snow directory does not exist: %s" % sceFilename   
57.         sys.exit()   
58.            
59.        
60.     ##############################   
61.     ### Read in the SCE values ###   
62.     ##############################       
63.     sceFile = open(sceFilename, 'r+')   
64.     sceReader = csv.reader(sceFile, delimiter=',')   
65.        
66.     # Skip the header.   
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67.     sceReader.next()   
68.        
69.     # Read the rows into a buffer so the algorithm can skip around.   
70.     rows = []   
71.     for row in sceReader:   
72.         rows.append(row)   
73.            
74.     # Set record length, N, and make sure there are 46 of them to match   
75.     # the number of 8-day periods in a water year.   
76.     N = len(rows)   
77.     if N != 46:   
78.         print "There are not enough SCE records for gage %s " % gageID   
79.         sys.exit()   
80.            
81.            
82.     ##########################################################################   
83.     ### Iterate through the rows and pick out the first set of SCE metrics ###   
84.     ##########################################################################   
85.        
86.     peakSCE = None   
87.     datePeakSCE = None   
88.     minSCE = rows[0][1] # set minSCE as first values in water year   
89.     dateMinSCE = rows[0][0] # set date of minSCE as first period of water year (

powy)   
90.     sumSCE = 0.0   
91.        
92.     i = 0   
93.     while i < N:   
94.    
95.         data = rows[i]   
96.         powy = int(data[0]) # period of water year   
97.         sce = float(data[1]) # snow cover extent as proportion of watershed   
98.            
99.         # Check to see if this value exceeds the current peakSCE.   
100.         if sce >= peakSCE:   
101.             peakSCE = sce   
102.             datePeakSCE = powy   
103.            
104.         # Check to see if this value is below the current minSCE.   
105.         if sce <= minSCE:   
106.             minSCE = sce   
107.             dateMinSCE = powy   
108.               
109.         # Add to sumSCE to average later into AvgSCE.   
110.         sumSCE = sumSCE + sce   
111.    
112.         # Increment the index.   
113.         i = i + 1   
114.        
115.     # Calculate average SCE.   
116.     avgSCE = sumSCE / N   
117.        
118.        
119.     ################################################################### 
120.     ### Iterate through rows and pick out secondary set of metrics. ### 
121.     ################################################################### 
122.  
123.     # The main snow season is defined as the periods which are 
124.  all consecutive and within - 20% of the peakSCE.   
125.     mainThreshold = peakSCE - (0.2*peakSCE)   
126.        
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127.     # The snow season is defined as the periods which are  
128. all consecutive and are above the minimum SCE by 10% of the maximum SCE. 
129.     # This definition helps account for permanent snowpacks at high  
130. elevations and watersheds with low maximum SCEs.   
131.     allThreshold = minSCE + (0.1*peakSCE)   
132.    
133.     SOS = None   
134.     EOS = None   
135.     SOMain = None   
136.     SOMelt = None   
137.     sosFound = False   
138.     origSOS = None   
139.     i = 0   
140.     while i < N:   
141.        
142.         data = rows[i]   
143.         powy = int(data[0])  
144.         sce = float(data[1])  
145.    
146.         # If the start of the snow season has not been found and  
147. this SCE is over the allThreshold,   
148.         # Then check to see if the next period is increasing.   
149.         # If yes, then mark the original POWY as the SOS.   
150.         if not SOS and sce >= allThreshold:   
151.            
152.             isGood = True   
153.             prevSCE = sce   
154.             for m in [1]:   
155.                 j = i + m   
156.                 currSCE = float(rows[j][1])   
157.    
158.                 if currSCE < prevSCE:   
159.                     isGood = False   
160.                     break   
161.                        
162.                 prevSCE = currSCE   
163.                        
164.             if isGood:   
165.                 SOS = powy   
166.            
167.         # Restart the season for early, temporary snow.   
168.         elif SOS and not SOMain and sce < allThreshold:   
169.             SOS = None   
170.            
171.         # If the snow season has started but not yet ended and this sce 

  
172.         # is less than allThreshold, set EOS to current period.   
173.         elif SOS and not EOS and sce < allThreshold:   
174.             EOS = powy   
175.    
176.         # If the snow season has started and the sce is above the   
177.         # mainThreshold, SOMain (start of main season) is set to  
178. current period.   
179.         if SOS and not SOMain and sce >= mainThreshold:   
180.             SOMain = powy   
181.            
182.         # If the main snow season has started but not yet melted and  
183.         # this sce is less than the mainThreshold, set SOMelt to current 
184. period.   
185.         elif SOMain and not SOMelt and sce < mainThreshold:   
186.             SOMelt = powy   



www.manaraa.com

115 

 

187.    
188.         # If the SCE goes back above the mainThreshold, reopen the main  
189. season.   
190.         elif SOMelt and sce >= mainThreshold:   
191.             SOMelt = None   
192.    
193.         # If SCE goes back above the allThreshold and the main season  
194.         # hasn't started (i.e. SOMain = None), reopen the snow season.   
195.         elif EOS and not SOMain and sce >= allThreshold:   
196.             EOS = None   
197.            
198.         # Catch SOS's that fall before the start of the water year.   
199.         # Make sure false spikes at end of season don't trigger it by  
200.         # checking if it's greater than 2 periods away from EOS.   
201.         elif SOS and EOS and not sosFound and sce >= allThreshold:   
202.                
203.             if (powy - EOS) > 2:   
204.                
205.                 origSOS = SOS   
206.                 SOS = (powy - 46) - 1   
207.                 sosFound = True   
208.    
209.         # Catch false SOS's that are temporary early snow that triggered 
210.  the case above.   
211.         elif SOS and EOS and sosFound and sce < allThreshold:   
212.                            
213.             SOS = origSOS   
214.             sosFound = False   
215.                    
216.         # Increment the index.   
217.         i = i + 1   
218.            
219.    
220.     # Calculate the duration of the snow season from SOS and EOS.   
221.     LOS = EOS - SOS   
222.    
223.     # Calculate the persistence of the snow season from SOMain and SOMel

t.   
224.     persistence = SOMelt - SOMain + 1   
225.                
226.     # Calculate the length of the snow melt from EOS and SOMelt.   
227.     LOMelt = EOS - SOMelt + 1   
228.    
229.        
230.     ############################################################## 
231.     ### Iterate through the rows and calculate the AvgPeakSCE. ###   
232.     ##############################################################  
233.     i = 0   
234.     sumPeakSCE = 0.0   
235.     while i < N:   
236.        
237.         data = rows[i]   
238.         powy = int(data[0]) 
239.         sce = float(data[1]) 
240.    
241.         if powy >= SOMain and powy < SOMelt:   
242.             sumPeakSCE = sumPeakSCE + sce   
243.            
244.         # Increment the index.   
245.         i = i + 1   
246.        
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247.     # Calculate average peak SCE.   
248.     avgPeakSCE = sumPeakSCE / (SOMelt - SOMain)   
249.        
250.        
251.     #################################   
252.     ### Write out the SCE metrics ###   
253.     #################################   
254.        
255.     outRow = [gageID, SOS, EOS, LOS, minSCE, dateMinSCE, peakSCE,  
256. datePeakSCE, avgPeakSCE, avgSCE, SOMain, SOMelt, persistence, LOMelt]   
257.     writer.writerow(outRow)   
258.        
259.        
260. ### Close the output file.   
261. outfile.close()   
262.    
263.    
264. print "Done!"   

 

Appendix D: Selecting metrics for analysis 

 Dozens of metrics were originally gathered from SWE, SCE, streamflow, and 

PRISM datasets for each watershed. A correlational analysis was done to generate the R 

and p values for each possible linear regression pairing. The R values for the analysis are 

shown in the images below. This data was used to determine which values were 

redundant or irrelevant to pinpoint the most important set of variables. The final metrics 

are SOS, SOMelt, EOS, AvgSCE, AvgAnnualTemp, AvgAnnualPPT, PeakSWE, and 

PeakQ. See Appendix A for the definition of each metric. 
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SOS EOS LOS MinSCE POWYMinSCE PeakSCE

SOS 1 -0.7961 -0.91901 -0.40621 -0.434605295 -0.671641256

EOS -0.79612 1 0.97021 0.601408 0.559156232 0.734134173

LOS -0.91901 0.97021 1 0.554432 0.538273812 0.747167837

MinSCE -0.40621 0.60141 0.55443 1 0.339961932 0.155715709

POWYMinSCE -0.43461 0.55916 0.53827 0.339962 1 0.274847725

PeakSCE -0.67164 0.73413 0.74717 0.155716 0.274847725 1

POWYPeakSCE -0.41591 0.36313 0.40308 -0.10439 0.158010889 0.445641351

AvgPeakSCE -0.68656 0.73421 0.75319 0.142433 0.288650523 0.995632562

AvgSCE -0.86642 0.89804 0.93193 0.349821 0.453709932 0.865625251

SOMain 0.783044 -0.6007 -0.70481 -0.25986 -0.341003943 -0.392523354

SOMelt -0.74674 0.77782 0.8057 0.271947 0.46650833 0.581036572

Persistence -0.80682 0.76725 0.82286 0.285215 0.453623085 0.554033889

LOMelt -0.32985 0.61522 0.53286 0.615657 0.3043879 0.439099508

VarianceAvgSCE 0.293284 -0.1287 -0.20124 -0.08385 0.028757346 -0.03928979

VariancePeakSCE 0.509622 -0.6341 -0.61715 -0.13377 -0.172438678 -0.8421214

VariancePeakQcms 0.095278 -0.0305 -0.05803 0.007472 -0.000500106 -0.140795104

VariancePeakQnormcmssqkm 0.055105 0.0587 0.01618 0.064839 0.311797286 -0.185247644

Q20 -0.48985 0.37326 0.43929 -0.03353 0.057541253 0.497080307

Q50 -0.66821 0.63814 0.68326 0.204673 0.114617339 0.724880441

Q80 -0.53115 0.51403 0.54753 0.319676 0.010828972 0.499030934

PeakPOWY -0.50534 0.49678 0.52596 0.258423 0.002943115 0.601418627

PeakQcms 0.017572 0.09868 0.05725 0.098144 0.016760136 -0.009002602

PeakQnormbyDrainageAreacmssqkm -0.42848 0.60989 0.56887 0.425918 0.536858477 0.231715536

PeakQnormbyMeanAnnualPeak 0.048168 0.08179 0.034 0.117572 0.0557362 -0.083948425

PeakQnormbyMeanAnnualMean -0.1834 0.00393 0.07599 -0.22875 -0.091783675 0.165129485

SCEatPeakQ -0.3913 0.50801 0.48762 0.161326 0.53133416 0.246753006

DRAIN_SQKM 0.108059 -0.0503 -0.07606 0.014349 -0.125706901 -0.101571587

LAT_GAGE -0.3905 0.532 0.50292 0.435553 0.283160998 0.31813897

LNG_GAGE -0.22951 -0.0772 0.04157 -0.21929 -0.492758058 0.213985409

Meanm -0.47911 0.28848 0.37976 -0.10806 -0.038842241 0.487531496

Minm -0.42673 0.17279 0.28342 -0.24942 -0.088498754 0.474847446

Maxm -0.4642 0.36399 0.42298 0.121505 0.045317526 0.368885967

Rangem 0.016863 0.20338 0.12574 0.47895 0.172572497 -0.195079553

MeanAnnualpptmm -0.11845 0.40322 0.31011 0.473461 0.445125697 -0.014980719

MeanAnnualtmeanC 0.835218 -0.729 -0.80929 -0.2333 -0.20369349 -0.791966739

MeanAnnualtminC 0.742355 -0.5637 -0.66443 -0.09289 -0.079178559 -0.711805481

MeanAnnualtmaxC 0.860589 -0.8248 -0.88187 -0.3405 -0.298971952 -0.809121787

MeanDecMarpptmm 0.018309 0.28412 0.17776 0.359056 0.508379903 -0.11749991

MeanAprJulpptmm -0.43719 0.53729 0.52506 0.423123 0.164225705 0.260309117

MeanAugNovpptmm -0.18586 0.42957 0.35427 0.564894 0.302293535 0.053998054

MeanDecMartmeanC 0.756764 -0.6073 -0.69863 -0.12792 -0.056196828 -0.747290516

MeanAprJultmeanC 0.869929 -0.8271 -0.88709 -0.32463 -0.389776591 -0.791732056

MeanAugNovtmeanC 0.831453 -0.7274 -0.80677 -0.25765 -0.194226214 -0.783091483

MeanDecMartminC 0.6385 -0.4331 -0.5378 0.003028 0.067955936 -0.648312949

MeanAprJultminC 0.816018 -0.7035 -0.78502 -0.20902 -0.291977901 -0.74189386

MeanAugNovtminC 0.75317 -0.5686 -0.67196 -0.11369 -0.085871061 -0.708371514

MeanDecMartmaxC 0.816276 -0.7377 -0.8074 -0.25362 -0.18086159 -0.787500053

MeanAprJultmaxC 0.862781 -0.876 -0.91612 -0.3956 -0.443366567 -0.785822304

MeanAugNovtmaxC 0.842912 -0.8098 -0.86501 -0.35705 -0.269022107 -0.794677037
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POWYPeakSCE AvgPeakSCE AvgSCE SOMain SOMelt Persistence

SOS -0.415906088 -0.68655754 -0.86642 0.7830439 -0.746742 -0.8068151

EOS 0.363127669 0.73420833 0.898041 -0.600651 0.777821 0.76725363

LOS 0.403081241 0.75318816 0.931932 -0.70481 0.805696 0.82286344

MinSCE -0.104388474 0.14243349 0.349821 -0.259863 0.271947 0.28521536

POWYMinSCE 0.158010889 0.28865052 0.45371 -0.341004 0.466508 0.45362309

PeakSCE 0.445641351 0.99563256 0.865625 -0.392523 0.581037 0.55403389

POWYPeakSCE 1 0.47703212 0.529246 -0.400729 0.572417 0.55058768

AvgPeakSCE 0.477032125 1 0.88329 -0.429168 0.616704 0.59231273

AvgSCE 0.529246373 0.88328953 1 -0.722053 0.867701 0.87360138

SOMain -0.400728934 -0.42916762 -0.72205 1 -0.732142 -0.8700614

SOMelt 0.572417025 0.61670352 0.867701 -0.732142 1 0.97277788

Persistence 0.550587681 0.59231273 0.873601 -0.870061 0.972778 1

LOMelt -0.140321856 0.39447805 0.340277 -0.0372 -0.016933 0.00040192

VarianceAvgSCE -0.166266042 -0.08492793 -0.28528 0.5984894 -0.342733 -0.4516493

VariancePeakSCE -0.332597875 -0.83127104 -0.66355 0.2505248 -0.399327 -0.3742223

VariancePeakQcms -0.116273395 -0.1449487 -0.11416 0.0408066 -0.106313 -0.0908208

VariancePeakQnormcmssqkm 0.020977544 -0.1789333 -0.02672 0.0284054 0.134011 0.08731872

Q20 0.468850859 0.52304106 0.593911 -0.51713 0.585998 0.60001793

Q50 0.46267272 0.7354707 0.78107 -0.586068 0.650672 0.67027537

Q80 0.26628696 0.48934476 0.528192 -0.385748 0.34324 0.37963792

PeakPOWY 0.250170792 0.60150822 0.587241 -0.346095 0.37576 0.38968141

PeakQcms -0.071019994 -0.01876912 0.012842 -0.032432 -0.038726 -0.0169917

PeakQnormbyDrainageAreacmssqkm 0.175790224 0.23734878 0.51284 -0.437383 0.586558 0.5732921

PeakQnormbyMeanAnnualPeak -0.111757561 -0.09401704 -0.03918 -0.009268 -0.062255 -0.0419005

PeakQnormbyMeanAnnualMean 0.2830682 0.20248842 0.253716 -0.350514 0.326748 0.35571494

SCEatPeakQ 0.351275469 0.27056962 0.498558 -0.4306 0.607458 0.5861096

DRAIN_SQKM -0.111259133 -0.1092654 -0.10453 0.0371874 -0.154682 -0.1245937

LAT_GAGE -0.030154738 0.30620182 0.397778 -0.393046 0.231025 0.30091179

LNG_GAGE 0.268842335 0.23433736 0.174511 -0.285364 0.123108 0.18617757

Meanm 0.502546874 0.51570703 0.52903 -0.397053 0.529968 0.51861731

Minm 0.526600364 0.50572946 0.472915 -0.379846 0.471807 0.47067224

Maxm 0.377791855 0.3859811 0.459287 -0.330605 0.468361 0.451426

Rangem -0.253716221 -0.21600112 -0.08454 0.113633 -0.072221 -0.0909253

MeanAnnualpptmm -0.163911827 -0.04288189 0.124264 -0.021898 0.14507 0.11243596

MeanAnnualtmeanC -0.504115043 -0.81088598 -0.89128 0.7520772 -0.734168 -0.7871803

MeanAnnualtminC -0.520924733 -0.73799136 -0.78884 0.7047803 -0.662536 -0.7192491

MeanAnnualtmaxC -0.455705594 -0.82042092 -0.92129 0.7431568 -0.747729 -0.7939588

MeanDecMarpptmm -0.184008843 -0.13958283 0.013398 0.0855608 0.089403 0.03559086

MeanAprJulpptmm 0.038439065 0.23769963 0.401832 -0.357078 0.341793 0.36883598

MeanAugNovpptmm -0.172069633 0.02136519 0.157987 -0.054817 0.100109 0.09109756

MeanDecMartmeanC -0.499594489 -0.77196966 -0.81068 0.7132377 -0.666276 -0.7248335

MeanAprJultmeanC -0.490270089 -0.80517877 -0.93194 0.750816 -0.785083 -0.8235979

MeanAugNovtmeanC -0.482324662 -0.79861515 -0.88022 0.7403005 -0.710925 -0.7663529

MeanDecMartminC -0.504111386 -0.67800409 -0.6847 0.625649 -0.570892 -0.6260059

MeanAprJultminC -0.519091807 -0.76332047 -0.87204 0.7419212 -0.754648 -0.7985457

MeanAugNovtminC -0.498624232 -0.73157571 -0.78731 0.7173535 -0.647199 -0.7124281

MeanDecMartmaxC -0.452796676 -0.80487675 -0.87369 0.7444446 -0.709563 -0.7667767

MeanAprJultmaxC -0.440583775 -0.79236194 -0.92594 0.7156237 -0.764584 -0.7967896

MeanAugNovtmaxC -0.439558165 -0.80309442 -0.90039 0.7130667 -0.718153 -0.7623184



www.manaraa.com

119 

 

 

LOMelt VarianceAvgSCE VariancePeakSCE VariancePeakQcms VariancePeakQnormcmssqkm

SOS -0.32985 0.293284352 0.509621615 0.095278116 0.055104585

EOS 0.615225 -0.128653764 -0.634133542 -0.030524531 0.058699676

LOS 0.53286 -0.201235488 -0.617153192 -0.058032087 0.016178701

MinSCE 0.615657 -0.08385012 -0.133773837 0.007471742 0.064839179

POWYMinSCE 0.304388 0.028757346 -0.172438678 -0.000500106 0.311797286

PeakSCE 0.4391 -0.03928979 -0.8421214 -0.140795104 -0.185247644

POWYPeakSCE -0.14032 -0.166266042 -0.332597875 -0.116273395 0.020977544

AvgPeakSCE 0.394478 -0.084927929 -0.831271043 -0.144948701 -0.178933297

AvgSCE 0.340277 -0.285279476 -0.66355181 -0.114161621 -0.026724659

SOMain -0.0372 0.598489425 0.250524807 0.040806638 0.028405361

SOMelt -0.01693 -0.342733483 -0.399327314 -0.106312988 0.134011269

Persistence 0.000402 -0.451649321 -0.374222267 -0.090820834 0.087318723

LOMelt 1 0.225238487 -0.50793877 0.084794065 -0.074714091

VarianceAvgSCE 0.225238 1 -0.097490074 -0.089472683 0.24324915

VariancePeakSCE -0.50794 -0.097490074 1 0.101144675 0.257643986

VariancePeakQcms 0.084794 -0.089472683 0.101144675 1 0.019378676

VariancePeakQnormcmssqkm -0.07471 0.24324915 0.257643986 0.019378676 1

Q20 -0.14123 -0.428132923 -0.384628931 -0.048434203 -0.208896182

Q50 0.199039 -0.42833068 -0.631356015 -0.086898171 -0.333682342

Q80 0.387213 -0.230341285 -0.460958103 -0.118335105 -0.343213734

PeakPOWY 0.31899 -0.254311211 -0.529635555 -0.135775607 -0.330271147

PeakQcms 0.20557 -0.160990363 0.008547692 0.89681226 -0.036310794

PeakQnormbyDrainageAreacmssqkm 0.234515 -0.064379386 -0.08539544 0.049216401 0.626368151

PeakQnormbyMeanAnnualPeak 0.208219 -0.125924309 0.075064238 0.89257636 0.027452177

PeakQnormbyMeanAnnualMean -0.4036 -0.393488211 -0.098605911 -0.071308848 -0.046961311

SCEatPeakQ 0.046219 -0.026860715 -0.131702779 -0.014768595 0.453251487

DRAIN_SQKM 0.113933 -0.170100484 0.084692356 0.880907389 -0.115109206

LAT_GAGE 0.556564 -0.145823787 -0.283424173 0.168394979 0.041395652

LNG_GAGE -0.2773 -0.36361893 -0.242826505 -0.173577037 -0.492307574

Meanm -0.20583 -0.296266582 -0.38824455 -0.22938128 -0.296420168

Minm -0.31692 -0.257370303 -0.358107082 -0.288210262 -0.211754845

Maxm -0.00842 -0.290167765 -0.2916543 -0.084202179 -0.325377607

Rangem 0.414148 -0.002013488 0.131048335 0.285221156 -0.105116196

MeanAnnualpptmm 0.459511 0.318477188 0.054991278 0.080500027 0.574740976

MeanAnnualtmeanC -0.23878 0.41567814 0.643030223 0.132883698 0.283034782

MeanAnnualtminC -0.06568 0.458497116 0.570345694 0.141672206 0.355852651

MeanAnnualtmaxC -0.3742 0.350438231 0.663603895 0.116315239 0.20042614

MeanDecMarpptmm 0.339854 0.36749424 0.166358759 0.103163007 0.665699212

MeanAprJulpptmm 0.426036 0.034435211 -0.236988513 0.052869549 0.241125458

MeanAugNovpptmm 0.557835 0.253854827 -0.03810687 0.018575165 0.355038334

MeanDecMartmeanC -0.13043 0.480799419 0.63188096 0.127312735 0.380565039

MeanAprJultmeanC -0.33098 0.306733037 0.614730087 0.130128013 0.119129111

MeanAugNovtmeanC -0.26546 0.404363763 0.631412421 0.131570587 0.293615372

MeanDecMartminC 0.027046 0.476202776 0.552587465 0.160444563 0.43826896

MeanAprJultminC -0.17261 0.375671258 0.554352702 0.119992096 0.191639124

MeanAugNovtminC -0.09273 0.466337638 0.557514381 0.122174257 0.356005209

MeanDecMartmaxC -0.28356 0.445091262 0.661295357 0.082064169 0.288364567

MeanAprJultmaxC -0.43457 0.236389752 0.626861427 0.130656245 0.056538315

MeanAugNovtmaxC -0.38742 0.329829075 0.651684189 0.130988462 0.225570931
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Q20 Q50 Q80 PeakPOWY PeakQcms PeakQnormbyDrainageAreacmssqkm

SOS -0.48985 -0.66821 -0.5312 -0.5053388 0.0175724 -0.428480296

EOS 0.37326 0.638143 0.51403 0.49678295 0.09868213 0.609891002

LOS 0.43929 0.683259 0.54753 0.52595921 0.05725263 0.568873544

MinSCE -0.03353 0.204673 0.31968 0.25842288 0.09814369 0.425917672

POWYMinSCE 0.05754 0.114617 0.01083 0.00294311 0.01676014 0.536858477

PeakSCE 0.49708 0.72488 0.49903 0.60141863 -0.0090026 0.231715536

POWYPeakSCE 0.46885 0.462673 0.26629 0.25017079 -0.07102 0.175790224

AvgPeakSCE 0.52304 0.735471 0.48934 0.60150822 -0.0187691 0.237348778

AvgSCE 0.59391 0.78107 0.52819 0.58724119 0.01284168 0.512839966

SOMain -0.51713 -0.58607 -0.3857 -0.3460949 -0.032432 -0.43738329

SOMelt 0.586 0.650672 0.34324 0.37576004 -0.0387259 0.586558402

Persistence 0.60002 0.670275 0.37964 0.38968141 -0.0169917 0.5732921

LOMelt -0.14123 0.199039 0.38721 0.31899002 0.2055697 0.234514919

VarianceAvgSCE -0.42813 -0.42833 -0.2303 -0.2543112 -0.1609904 -0.064379386

VariancePeakSCE -0.38463 -0.63136 -0.461 -0.5296356 0.00854769 -0.08539544

VariancePeakQcms -0.04843 -0.0869 -0.1183 -0.1357756 0.89681226 0.049216401

VariancePeakQnormcmssqkm -0.2089 -0.33368 -0.3432 -0.3302711 -0.0363108 0.626368151

Q20 1 0.79786 0.35992 0.4654409 0.01971759 0.165421048

Q50 0.79786 1 0.70918 0.73019744 0.02194753 0.136959773

Q80 0.35992 0.709181 1 0.81380684 -0.0301614 -0.009383835

PeakPOWY 0.46544 0.730197 0.81381 1 0.00056662 0.053322823

PeakQcms 0.01972 0.021948 -0.0302 0.00056662 1 0.15136944

PeakQnormbyDrainageAreacmssqkm 0.16542 0.13696 -0.0094 0.05332282 0.15136944 1

PeakQnormbyMeanAnnualPeak -0.06079 -0.06257 -0.0851 -0.0717491 0.98173355 0.18489737

PeakQnormbyMeanAnnualMean 0.76091 0.439375 -0.049 0.19553381 -0.0769055 0.094640044

SCEatPeakQ 0.21843 0.069294 -0.1567 -0.1633441 0.00955887 0.722269613

DRAIN_SQKM -0.01715 -0.02699 0.01007 0.03658194 0.92012354 -0.027854987

LAT_GAGE -0.08931 0.182601 0.19495 0.1277511 0.3322667 0.442354727

LNG_GAGE 0.49288 0.528121 0.46219 0.4588333 -0.1836412 -0.415544525

Meanm 0.73414 0.686892 0.47475 0.51969481 -0.2518534 -0.123772541

Minm 0.67706 0.605401 0.38025 0.44337602 -0.3438911 -0.131864643

Maxm 0.62368 0.627553 0.51173 0.49947967 -0.0688489 -0.097731232

Rangem -0.16147 -0.06094 0.10212 0.0029945 0.37808464 0.0597955

MeanAnnualpptmm -0.41312 -0.29348 -0.1338 -0.1924807 0.1420453 0.710134274

MeanAnnualtmeanC -0.6935 -0.86045 -0.6498 -0.6490373 0.0186821 -0.236477127

MeanAnnualtminC -0.73813 -0.83845 -0.5992 -0.6124879 0.05562853 -0.0764919

MeanAnnualtmaxC -0.6081 -0.82217 -0.6506 -0.637606 -0.0148734 -0.360582668

MeanDecMarpptmm -0.45444 -0.41883 -0.3179 -0.3541135 0.13219228 0.680762135

MeanAprJulpptmm -0.0561 0.179353 0.30134 0.21553786 0.16491021 0.594047125

MeanAugNovpptmm -0.36952 -0.182 0.0618 -0.0071399 0.09764382 0.572627945

MeanDecMartmeanC -0.71143 -0.87655 -0.6445 -0.6532013 0.02661915 -0.088223784

MeanAprJultmeanC -0.62237 -0.78028 -0.5866 -0.5768185 0.01543914 -0.406084606

MeanAugNovtmeanC -0.6822 -0.84641 -0.6625 -0.6587425 0.0106582 -0.240385394

MeanDecMartminC -0.72864 -0.83391 -0.6001 -0.6192957 0.0932406 0.080627826

MeanAprJultminC -0.69193 -0.77657 -0.5385 -0.5491082 0.02449273 -0.288461045

MeanAugNovtminC -0.7256 -0.82395 -0.5979 -0.6041049 0.02627242 -0.098002716

MeanDecMartmaxC -0.63356 -0.84715 -0.6365 -0.6335135 -0.0450421 -0.256771866

MeanAprJultmaxC -0.53387 -0.73944 -0.5909 -0.5658811 0.00759261 -0.474049564

MeanAugNovtmaxC -0.60542 -0.81225 -0.6733 -0.6619081 -0.0025014 -0.339583469
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PeakQnormbyMeanAnnualPeak PeakQnormbyMeanAnnualMean SCEatPeakQ DRAIN_SQKM

SOS 0.048168404 -0.183400896 -0.391302215 0.108058542

EOS 0.081794989 0.003933877 0.508011876 -0.050345835

LOS 0.034001549 0.075990784 0.487617788 -0.076061881

MinSCE 0.117571919 -0.228745174 0.161326236 0.014348816

POWYMinSCE 0.0557362 -0.091783675 0.53133416 -0.125706901

PeakSCE -0.083948425 0.165129485 0.246753006 -0.101571587

POWYPeakSCE -0.111757561 0.2830682 0.351275469 -0.111259133

AvgPeakSCE -0.094017037 0.202488423 0.270569623 -0.109265397

AvgSCE -0.039181471 0.253715723 0.498557694 -0.104533558

SOMain -0.0092683 -0.350513866 -0.430600368 0.037187374

SOMelt -0.06225545 0.326747538 0.607458439 -0.154681991

Persistence -0.041900457 0.355714937 0.586109597 -0.124593696

LOMelt 0.208218635 -0.403602847 0.046219328 0.113932864

VarianceAvgSCE -0.125924309 -0.393488211 -0.026860715 -0.170100484

VariancePeakSCE 0.075064238 -0.098605911 -0.131702779 0.084692356

VariancePeakQcms 0.89257636 -0.071308848 -0.014768595 0.880907389

VariancePeakQnormcmssqkm 0.027452177 -0.046961311 0.453251487 -0.115109206

Q20 -0.060794516 0.760912181 0.218434498 -0.017145172

Q50 -0.062569424 0.439375079 0.069293726 -0.026992111

Q80 -0.085074138 -0.049028445 -0.156706041 0.010069024

PeakPOWY -0.071749147 0.195533811 -0.163344051 0.036581939

PeakQcms 0.98173355 -0.076905472 0.009558865 0.920123542

PeakQnormbyDrainageAreacmssqkm 0.18489737 0.094640044 0.722269613 -0.027854987

PeakQnormbyMeanAnnualPeak 1 -0.125769696 0.020897532 0.887121715

PeakQnormbyMeanAnnualMean -0.125769696 1 0.164938363 -0.091136945

SCEatPeakQ 0.020897532 0.164938363 1 -0.103922922

DRAIN_SQKM 0.887121715 -0.091136945 -0.103922922 1

LAT_GAGE 0.343170538 -0.266740682 0.212962649 0.188485847

LNG_GAGE -0.255609683 0.460133995 -0.378263958 -0.095616676

Meanm -0.322315356 0.547311309 0.064687416 -0.202083818

Minm -0.414158457 0.593718425 0.067157931 -0.297279868

Maxm -0.10663066 0.365055117 0.01783755 -0.026274108

Rangem 0.427020701 -0.358763936 -0.068590599 0.366536069

MeanAnnualpptmm 0.228449462 -0.426892061 0.391692804 -0.007909793

MeanAnnualtmeanC 0.086295557 -0.367998366 -0.25331925 0.07946686

MeanAnnualtminC 0.132245127 -0.463304432 -0.159093675 0.064415199

MeanAnnualtmaxC 0.040345121 -0.260042349 -0.318789179 0.087320605

MeanDecMarpptmm 0.224329549 -0.422390374 0.448375604 -0.009865998

MeanAprJulpptmm 0.192842229 -0.22098921 0.20531108 0.033316725

MeanAugNovpptmm 0.172141104 -0.391202176 0.230629796 -0.02344764

MeanDecMartmeanC 0.103551178 -0.427847015 -0.129870016 0.0590107

MeanAprJultmeanC 0.065930875 -0.273479331 -0.405921527 0.107782075

MeanAugNovtmeanC 0.077410206 -0.353585044 -0.241717738 0.071811513

MeanDecMartminC 0.176932 -0.501070826 -0.022680048 0.072713191

MeanAprJultminC 0.083642015 -0.378289154 -0.351597068 0.071338842

MeanAugNovtminC 0.101734407 -0.444871375 -0.1618064 0.040898

MeanDecMartmaxC 0.018363471 -0.315491728 -0.2306485 0.039767723

MeanAprJultmaxC 0.0485798 -0.177334796 -0.425081074 0.129849741

MeanAugNovtmaxC 0.053164049 -0.258707356 -0.290812267 0.092140055



www.manaraa.com

122 

 

 

LAT_GAGE LNG_GAGE Mean Elev (m) Min Elev (m) Max Elev (m) Range Elev (m)

SOS -0.390497935 -0.229508018 -0.479108943 -0.42673442 -0.464197136 0.016863448

EOS 0.531997934 -0.077235491 0.288481876 0.172791837 0.363992155 0.203380301

LOS 0.502921886 0.041571534 0.379756477 0.283419196 0.422978653 0.125743804

MinSCE 0.435553309 -0.219291137 -0.108064702 -0.249422453 0.121505204 0.478950145

POWYMinSCE 0.283160998 -0.492758058 -0.038842241 -0.088498754 0.045317526 0.172572497

PeakSCE 0.31813897 0.213985409 0.487531496 0.474847446 0.368885967 -0.195079553

POWYPeakSCE -0.030154738 0.268842335 0.502546874 0.526600364 0.377791855 -0.253716221

AvgPeakSCE 0.30620182 0.234337358 0.515707033 0.505729463 0.385981099 -0.216001118

AvgSCE 0.397777699 0.174511289 0.529029821 0.472914623 0.459286871 -0.08453964

SOMain -0.393046335 -0.285364179 -0.397053264 -0.379846391 -0.330605289 0.113633002

SOMelt 0.231025137 0.12310759 0.529968162 0.471806573 0.468360936 -0.072220654

Persistence 0.300911794 0.186177567 0.518617309 0.470672236 0.451426 -0.090925297

LOMelt 0.556564106 -0.277295839 -0.205829245 -0.316924314 -0.008422051 0.414148464

VarianceAvgSCE -0.145823787 -0.36361893 -0.296266582 -0.257370303 -0.290167765 -0.002013488

VariancePeakSCE -0.283424173 -0.242826505 -0.38824455 -0.358107082 -0.2916543 0.131048335

VariancePeakQcms 0.168394979 -0.173577037 -0.22938128 -0.288210262 -0.084202179 0.285221156

VariancePeakQnormcmssqkm 0.041395652 -0.492307574 -0.296420168 -0.211754845 -0.325377607 -0.105116196

Q20 -0.089311142 0.492875543 0.734140397 0.677055584 0.623679911 -0.161472943

Q50 0.182600975 0.528120918 0.686891686 0.60540117 0.627553348 -0.060937452

Q80 0.194948986 0.462194346 0.474753965 0.380249931 0.51172771 0.102115347

PeakPOWY 0.127751104 0.4588333 0.519694809 0.443376017 0.499479668 0.002994502

PeakQcms 0.332266697 -0.18364125 -0.251853427 -0.343891104 -0.068848885 0.378084639

PeakQnormbyDrainageAreacmssqkm 0.442354727 -0.415544525 -0.123772541 -0.131864643 -0.097731232 0.0597955

PeakQnormbyMeanAnnualPeak 0.343170538 -0.255609683 -0.322315356 -0.414158457 -0.10663066 0.427020701

PeakQnormbyMeanAnnualMean -0.266740682 0.460133995 0.547311309 0.593718425 0.365055117 -0.358763936

SCEatPeakQ 0.212962649 -0.378263958 0.064687416 0.067157931 0.01783755 -0.068590599

DRAIN_SQKM 0.188485847 -0.095616676 -0.202083818 -0.297279868 -0.026274108 0.366536069

LAT_GAGE 1 -0.326137763 -0.463345306 -0.4547139 -0.401581684 0.129086844

LNG_GAGE -0.326137763 1 0.711808447 0.719502588 0.537104997 -0.321672578

Meanm -0.463345306 0.711808447 1 0.931178782 0.871500213 -0.205682672

Minm -0.4547139 0.719502588 0.931178782 1 0.693703042 -0.510118041

Maxm -0.401581684 0.537104997 0.871500213 0.693703042 1 0.26562933

Rangem 0.129086844 -0.321672578 -0.205682672 -0.510118041 0.26562933 1

MeanAnnualpptmm 0.511102064 -0.680561842 -0.544905688 -0.545542718 -0.390011217 0.264478885

MeanAnnualtmeanC -0.302466053 -0.485362461 -0.687521746 -0.640654448 -0.590495504 0.152377103

MeanAnnualtminC -0.110140924 -0.614940134 -0.786204203 -0.749967688 -0.660136659 0.215531315

MeanAnnualtmaxC -0.450441516 -0.339585778 -0.555250187 -0.502218933 -0.490108846 0.086957434

MeanDecMarpptmm 0.397884612 -0.838333177 -0.608471582 -0.602296577 -0.453616388 0.264489855

MeanAprJulpptmm 0.667421066 -0.09694067 -0.221698156 -0.20925576 -0.169461538 0.077726923

MeanAugNovpptmm 0.473155038 -0.419027179 -0.387702955 -0.40947396 -0.233804025 0.268885583

MeanDecMartmeanC -0.229003642 -0.635104661 -0.729588071 -0.695724088 -0.604504567 0.209359243

MeanAprJultmeanC -0.37135941 -0.249913779 -0.58159809 -0.52855204 -0.518451402 0.088359063

MeanAugNovtmeanC -0.303600559 -0.482778101 -0.679576008 -0.626480997 -0.592872857 0.130566897

MeanDecMartminC -0.000416794 -0.759304845 -0.826044144 -0.796615607 -0.677218315 0.257571758

MeanAprJultminC -0.219232352 -0.358759809 -0.684695481 -0.639012548 -0.598852399 0.140199968

MeanAugNovtminC -0.154779517 -0.587878993 -0.750346438 -0.716396509 -0.6313293 0.204996518

MeanDecMartmaxC -0.447946347 -0.452159102 -0.567604158 -0.531969774 -0.477799313 0.141478678

MeanAprJultmaxC -0.467876951 -0.151976171 -0.469517399 -0.4137639 -0.427410726 0.043431029

MeanAugNovtmaxC -0.404060243 -0.368879673 -0.581042267 -0.51588831 -0.525555079 0.06292566
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MeanAnnualpptmm MeanAnnualtmeanC MeanAnnualtminC MeanAnnualtmaxC

SOS -0.118453386 0.835217885 0.74235491 0.86058941

EOS 0.403220191 -0.728957753 -0.563670044 -0.824773633

LOS 0.310109385 -0.809286552 -0.664427752 -0.881865332

MinSCE 0.473461208 -0.23330235 -0.092891118 -0.340501774

POWYMinSCE 0.445125697 -0.20369349 -0.079178559 -0.298971952

PeakSCE -0.014980719 -0.791966739 -0.711805481 -0.809121787

POWYPeakSCE -0.163911827 -0.504115043 -0.520924733 -0.455705594

AvgPeakSCE -0.042881891 -0.810885976 -0.737991363 -0.820420925

AvgSCE 0.124263685 -0.891282772 -0.788837703 -0.921285655

SOMain -0.021897712 0.75207725 0.704780329 0.743156766

SOMelt 0.145070238 -0.73416837 -0.662535633 -0.747728516

Persistence 0.112435957 -0.787180301 -0.719249137 -0.793958752

LOMelt 0.459510841 -0.238780919 -0.065678787 -0.374204799

VarianceAvgSCE 0.318477188 0.41567814 0.458497116 0.350438231

VariancePeakSCE 0.054991278 0.643030223 0.570345694 0.663603895

VariancePeakQcms 0.080500027 0.132883698 0.141672206 0.116315239

VariancePeakQnormcmssqkm 0.574740976 0.283034782 0.355852651 0.20042614

Q20 -0.413124018 -0.693501202 -0.738132468 -0.608098921

Q50 -0.293480156 -0.860452684 -0.838445821 -0.822167669

Q80 -0.133819404 -0.649792017 -0.599233512 -0.650562342

PeakPOWY -0.192480707 -0.649037279 -0.612487948 -0.637605994

PeakQcms 0.142045302 0.018682101 0.05562853 -0.014873357

PeakQnormbyDrainageAreacmssqkm 0.710134274 -0.236477127 -0.0764919 -0.360582668

PeakQnormbyMeanAnnualPeak 0.228449462 0.086295557 0.132245127 0.040345121

PeakQnormbyMeanAnnualMean -0.426892061 -0.367998366 -0.463304432 -0.260042349

SCEatPeakQ 0.391692804 -0.25331925 -0.159093675 -0.318789179

DRAIN_SQKM -0.007909793 0.07946686 0.064415199 0.087320605

LAT_GAGE 0.511102064 -0.302466053 -0.110140924 -0.450441516

LNG_GAGE -0.680561842 -0.485362461 -0.614940134 -0.339585778

Meanm -0.544905688 -0.687521746 -0.786204203 -0.555250187

Minm -0.545542718 -0.640654448 -0.749967688 -0.502218933

Maxm -0.390011217 -0.590495504 -0.660136659 -0.490108846

Rangem 0.264478885 0.152377103 0.215531315 0.086957434

MeanAnnualpptmm 1 0.147107743 0.348706117 -0.039038951

MeanAnnualtmeanC 0.147107743 1 0.959121801 0.968889064

MeanAnnualtminC 0.348706117 0.959121801 1 0.859243009

MeanAnnualtmaxC -0.039038951 0.968889064 0.859243009 1

MeanDecMarpptmm 0.949422273 0.308427734 0.482876796 0.135238142

MeanAprJulpptmm 0.695557527 -0.308774601 -0.12461306 -0.449188311

MeanAugNovpptmm 0.902682245 0.005349356 0.198686666 -0.164094291

MeanDecMartmeanC 0.315006982 0.970277246 0.970258087 0.90541961

MeanAprJultmeanC -0.059755147 0.956460071 0.872426513 0.966002819

MeanAugNovtmeanC 0.123381787 0.996342636 0.949185253 0.970967604

MeanDecMartminC 0.500056246 0.896547728 0.971084744 0.7714158

MeanAprJultminC 0.116118144 0.955155938 0.947960393 0.897586287

MeanAugNovtminC 0.315044372 0.962393062 0.995850153 0.868785599

MeanDecMartmaxC 0.095608657 0.965386168 0.887665412 0.968810397

MeanAprJultmaxC -0.192038499 0.903895867 0.765312876 0.964659956

MeanAugNovtmaxC -0.037686147 0.962144939 0.853343484 0.992967985
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MeanDecMarpptmm MeanAprJulpptmm MeanAugNovpptmm

SOS 0.018309262 -0.437194685 -0.185860686

EOS 0.284115174 0.537287132 0.42957408

LOS 0.177760989 0.525063543 0.354265834

MinSCE 0.359055777 0.423123112 0.564893629

POWYMinSCE 0.508379903 0.164225705 0.302293535

PeakSCE -0.11749991 0.260309117 0.053998054

POWYPeakSCE -0.184008843 0.038439065 -0.172069633

AvgPeakSCE -0.139582831 0.237699626 0.021365186

AvgSCE 0.013397987 0.401832443 0.15798734

SOMain 0.085560752 -0.357077736 -0.054817307

SOMelt 0.089402947 0.341792504 0.10010876

Persistence 0.035590859 0.368835978 0.09109756

LOMelt 0.339854128 0.426035781 0.55783537

VarianceAvgSCE 0.36749424 0.034435211 0.253854827

VariancePeakSCE 0.166358759 -0.236988513 -0.03810687

VariancePeakQcms 0.103163007 0.052869549 0.018575165

VariancePeakQnormcmssqkm 0.665699212 0.241125458 0.355038334

Q20 -0.454443437 -0.056099448 -0.369516213

Q50 -0.418832895 0.179353398 -0.181996796

Q80 -0.317867333 0.301344778 0.061795561

PeakPOWY -0.354113479 0.215537862 -0.007139902

PeakQcms 0.132192277 0.164910215 0.097643821

PeakQnormbyDrainageAreacmssqkm 0.680762135 0.594047125 0.572627945

PeakQnormbyMeanAnnualPeak 0.224329549 0.192842229 0.172141104

PeakQnormbyMeanAnnualMean -0.422390374 -0.22098921 -0.391202176

SCEatPeakQ 0.448375604 0.20531108 0.230629796

DRAIN_SQKM -0.009865998 0.033316725 -0.02344764

LAT_GAGE 0.397884612 0.667421066 0.473155038

LNG_GAGE -0.838333177 -0.09694067 -0.419027179

Meanm -0.608471582 -0.221698156 -0.387702955

Minm -0.602296577 -0.20925576 -0.40947396

Maxm -0.453616388 -0.169461538 -0.233804025

Rangem 0.264489855 0.077726923 0.268885583

MeanAnnualpptmm 0.949422273 0.695557527 0.902682245

MeanAnnualtmeanC 0.308427734 -0.308774601 0.005349356

MeanAnnualtminC 0.482876796 -0.12461306 0.198686666

MeanAnnualtmaxC 0.135238142 -0.449188311 -0.164094291

MeanDecMarpptmm 1 0.48570999 0.746747449

MeanAprJulpptmm 0.48570999 1 0.710170109

MeanAugNovpptmm 0.746747449 0.710170109 1

MeanDecMartmeanC 0.477645049 -0.213203842 0.14803311

MeanAprJultmeanC 0.071974133 -0.386979601 -0.133698597

MeanAugNovtmeanC 0.297416024 -0.327390899 -0.038943692

MeanDecMartminC 0.637947577 -0.029719835 0.317240784

MeanAprJultminC 0.22383152 -0.224889515 0.034877486

MeanAugNovtminC 0.455514631 -0.155261985 0.162662322

MeanDecMartmaxC 0.2703364 -0.386469342 -0.040789035

MeanAprJultmaxC -0.049166768 -0.490305756 -0.256212874

MeanAugNovtmaxC 0.152501468 -0.445047155 -0.197973082
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MeanDecMartmeanC MeanAprJultmeanC MeanAugNovtmeanC

SOS 0.756763732 0.869929169 0.831453354

EOS -0.607318493 -0.827053484 -0.727402564

LOS -0.698632086 -0.887089925 -0.806766199

MinSCE -0.127920363 -0.32462974 -0.257647904

POWYMinSCE -0.056196828 -0.389776591 -0.194226214

PeakSCE -0.747290516 -0.791732056 -0.783091483

POWYPeakSCE -0.499594489 -0.490270089 -0.482324662

AvgPeakSCE -0.771969661 -0.805178765 -0.798615146

AvgSCE -0.81067847 -0.931940985 -0.880224978

SOMain 0.713237733 0.750815996 0.740300522

SOMelt -0.666276147 -0.785083341 -0.710925302

Persistence -0.724833466 -0.823597892 -0.766352866

LOMelt -0.130427033 -0.330975159 -0.265462104

VarianceAvgSCE 0.480799419 0.306733037 0.404363763

VariancePeakSCE 0.63188096 0.614730087 0.631412421

VariancePeakQcms 0.127312735 0.130128013 0.131570587

VariancePeakQnormcmssqkm 0.380565039 0.119129111 0.293615372

Q20 -0.711431167 -0.622370686 -0.682199524

Q50 -0.876553026 -0.780280159 -0.846407249

Q80 -0.644534347 -0.586602233 -0.662473933

PeakPOWY -0.65320133 -0.576818476 -0.658742522

PeakQcms 0.026619155 0.015439138 0.010658198

PeakQnormbyDrainageAreacmssqkm -0.088223784 -0.406084606 -0.240385394

PeakQnormbyMeanAnnualPeak 0.103551178 0.065930875 0.077410206

PeakQnormbyMeanAnnualMean -0.427847015 -0.273479331 -0.353585044

SCEatPeakQ -0.129870016 -0.405921527 -0.241717738

DRAIN_SQKM 0.0590107 0.107782075 0.071811513

LAT_GAGE -0.229003642 -0.37135941 -0.303600559

LNG_GAGE -0.635104661 -0.249913779 -0.482778101

Meanm -0.729588071 -0.58159809 -0.679576008

Minm -0.695724088 -0.52855204 -0.626480997

Maxm -0.604504567 -0.518451402 -0.592872857

Rangem 0.209359243 0.088359063 0.130566897

MeanAnnualpptmm 0.315006982 -0.059755147 0.123381787

MeanAnnualtmeanC 0.970277246 0.956460071 0.996342636

MeanAnnualtminC 0.970258087 0.872426513 0.949185253

MeanAnnualtmaxC 0.90541961 0.966002819 0.970967604

MeanDecMarpptmm 0.477645049 0.071974133 0.297416024

MeanAprJulpptmm -0.213203842 -0.386979601 -0.327390899

MeanAugNovpptmm 0.14803311 -0.133698597 -0.038943692

MeanDecMartmeanC 1 0.860489018 0.958296453

MeanAprJultmeanC 0.860489018 1 0.956028241

MeanAugNovtmeanC 0.958296453 0.956028241 1

MeanDecMartminC 0.960458435 0.752219773 0.881003639

MeanAprJultminC 0.89386228 0.958842092 0.949704976

MeanAugNovtminC 0.964065153 0.882717615 0.957121778

MeanDecMartmaxC 0.956973204 0.900845512 0.958127836

MeanAprJultmaxC 0.786557339 0.97573182 0.907358885

MeanAugNovtmaxC 0.894639808 0.95583098 0.972726272
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MeanDecMartminC MeanAprJultminC MeanAugNovtminC

SOS 0.638499567 0.81601797 0.753170146

EOS -0.433127665 -0.703510709 -0.568580371

LOS -0.537803359 -0.785021615 -0.671956747

MinSCE 0.003028188 -0.209020159 -0.1136858

POWYMinSCE 0.067955936 -0.291977901 -0.085871061

PeakSCE -0.648312949 -0.74189386 -0.708371514

POWYPeakSCE -0.504111386 -0.519091807 -0.498624232

AvgPeakSCE -0.67800409 -0.763320474 -0.731575707

AvgSCE -0.68470281 -0.872035869 -0.787313673

SOMain 0.625648994 0.741921218 0.71735349

SOMelt -0.570892302 -0.754647662 -0.647199448

Persistence -0.626005884 -0.798545719 -0.712428086

LOMelt 0.027046453 -0.172608731 -0.092727816

VarianceAvgSCE 0.476202776 0.375671258 0.466337638

VariancePeakSCE 0.552587465 0.554352702 0.557514381

VariancePeakQcms 0.160444563 0.119992096 0.122174257

VariancePeakQnormcmssqkm 0.43826896 0.191639124 0.356005209

Q20 -0.728644216 -0.691929746 -0.725600098

Q50 -0.833912243 -0.776570689 -0.823945254

Q80 -0.600107684 -0.538460843 -0.597945219

PeakPOWY -0.619295681 -0.549108186 -0.604104939

PeakQcms 0.093240597 0.024492734 0.026272418

PeakQnormbyDrainageAreacmssqkm 0.080627826 -0.288461045 -0.098002716

PeakQnormbyMeanAnnualPeak 0.176932 0.083642015 0.101734407

PeakQnormbyMeanAnnualMean -0.501070826 -0.378289154 -0.444871375

SCEatPeakQ -0.022680048 -0.351597068 -0.1618064

DRAIN_SQKM 0.072713191 0.071338842 0.040898

LAT_GAGE -0.000416794 -0.219232352 -0.154779517

LNG_GAGE -0.759304845 -0.358759809 -0.587878993

Meanm -0.826044144 -0.684695481 -0.750346438

Minm -0.796615607 -0.639012548 -0.716396509

Maxm -0.677218315 -0.598852399 -0.6313293

Rangem 0.257571758 0.140199968 0.204996518

MeanAnnualpptmm 0.500056246 0.116118144 0.315044372

MeanAnnualtmeanC 0.896547728 0.955155938 0.962393062

MeanAnnualtminC 0.971084744 0.947960393 0.995850153

MeanAnnualtmaxC 0.7714158 0.897586287 0.868785599

MeanDecMarpptmm 0.637947577 0.22383152 0.455514631

MeanAprJulpptmm -0.029719835 -0.224889515 -0.155261985

MeanAugNovpptmm 0.317240784 0.034877486 0.162662322

MeanDecMartmeanC 0.960458435 0.89386228 0.964065153

MeanAprJultmeanC 0.752219773 0.958842092 0.882717615

MeanAugNovtmeanC 0.881003639 0.949704976 0.957121778

MeanDecMartminC 1 0.847013174 0.953741991

MeanAprJultminC 0.847013174 1 0.955408931

MeanAugNovtminC 0.953741991 0.955408931 1

MeanDecMartmaxC 0.838341113 0.867395025 0.893614348

MeanAprJultmaxC 0.636986078 0.873398716 0.777219685

MeanAugNovtmaxC 0.76848501 0.886629102 0.863823117
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MeanDecMartmaxC MeanAprJultmaxC MeanAugNovtmaxC

SOS 0.816275757 0.862781265 0.842912403

EOS -0.737705995 -0.876005387 -0.809760665

LOS -0.8074019 -0.916118641 -0.865007567

MinSCE -0.253621502 -0.395603577 -0.357047267

POWYMinSCE -0.18086159 -0.443366567 -0.269022107

PeakSCE -0.787500053 -0.785822304 -0.794677037

POWYPeakSCE -0.452796676 -0.440583775 -0.439558165

AvgPeakSCE -0.804876754 -0.79236194 -0.80309442

AvgSCE -0.87368539 -0.925942134 -0.900392317

SOMain 0.744444585 0.715623717 0.713066686

SOMelt -0.709562819 -0.764583816 -0.718153437

Persistence -0.76677673 -0.796789564 -0.762318385

LOMelt -0.283562863 -0.434566557 -0.387418696

VarianceAvgSCE 0.445091262 0.236389752 0.329829075

VariancePeakSCE 0.661295357 0.626861427 0.651684189

VariancePeakQcms 0.082064169 0.130656245 0.130988462

VariancePeakQnormcmssqkm 0.288364567 0.056538315 0.225570931

Q20 -0.633560131 -0.533870086 -0.605419832

Q50 -0.847154773 -0.739438449 -0.81224827

Q80 -0.636542018 -0.59087295 -0.673329786

PeakPOWY -0.633513524 -0.565881105 -0.6619081

PeakQcms -0.045042062 0.007592606 -0.002501412

PeakQnormbyDrainageAreacmssqkm -0.256771866 -0.474049564 -0.339583469

PeakQnormbyMeanAnnualPeak 0.018363471 0.0485798 0.053164049

PeakQnormbyMeanAnnualMean -0.315491728 -0.177334796 -0.258707356

SCEatPeakQ -0.2306485 -0.425081074 -0.290812267

DRAIN_SQKM 0.039767723 0.129849741 0.092140055

LAT_GAGE -0.447946347 -0.467876951 -0.404060243

LNG_GAGE -0.452159102 -0.151976171 -0.368879673

Meanm -0.567604158 -0.469517399 -0.581042267

Minm -0.531969774 -0.4137639 -0.51588831

Maxm -0.477799313 -0.427410726 -0.525555079

Rangem 0.141478678 0.043431029 0.06292566

MeanAnnualpptmm 0.095608657 -0.192038499 -0.037686147

MeanAnnualtmeanC 0.965386168 0.903895867 0.962144939

MeanAnnualtminC 0.887665412 0.765312876 0.853343484

MeanAnnualtmaxC 0.968810397 0.964659956 0.992967985

MeanDecMarpptmm 0.2703364 -0.049166768 0.152501468

MeanAprJulpptmm -0.386469342 -0.490305756 -0.445047155

MeanAugNovpptmm -0.040789035 -0.256212874 -0.197973082

MeanDecMartmeanC 0.956973204 0.786557339 0.894639808

MeanAprJultmeanC 0.900845512 0.97573182 0.95583098

MeanAugNovtmeanC 0.958127836 0.907358885 0.972726272

MeanDecMartminC 0.838341113 0.636986078 0.76848501

MeanAprJultminC 0.867395025 0.873398716 0.886629102

MeanAugNovtminC 0.893614348 0.777219685 0.863823117

MeanDecMartmaxC 1 0.876186713 0.950757727

MeanAprJultmaxC 0.876186713 1 0.955663507

MeanAugNovtmaxC 0.950757727 0.955663507 1
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